Появление на земле растений и животных. Книга Как произошла жизнь на земле. Содержание - Происхождение растений и животных Три мира живой природы

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

9. Как развивалась жизнь на Земле - Рабочая тетрадь по биологии 5 класса (Н.И.Сонин, А.А.Плешаков) - 2013 год. Появление на земле растений и животных


Как произошла жизнь на земле. Содержание - Происхождение растений и животных Три мира живой природы

Но в основе всех живых существ, от самых простых до самых высших, находятся белковые вещества. Эти белковые вещества находятся в живых существах в особом состоянии и служат там для образования особого строения, особой организации, без чего не может быть жизни. 

Главные ступени развития жизни на земле

Развитие жизни на земле от её первого начала до нашего времени продолжается миллиарды лет. За это долгое время жизнь на земле прошла через ряд ступеней от более простого к более сложному и совершенному. Вот главные такие ступени.

1. От веществ минеральной природы до органических веществ — белков.

2. От органических веществ белков к более сложным живым белкам, или к самым простым живым существам.

3. От этих самых простых живых существ до более сложных, но ещё доклеточных организмов вроде бактерий.

4. От более сложных доклеточных организмов к одноклеточным растениям и животным.

5. От этих одноклеточных существ до самых сложных многоклеточных растений и животных.

6. От высших животных — обезьян до человека.

Из перечисленных ступеней жизни видно, какой огромный, очень долгий путь прошла жизнь в своём историческом развитии, или в своей эволюции, на земле.

От разных перечисленных ступеней жизни до наших дней сохранились живые существа — своего рода остатки, пережитки соответствующего древнего времени, но, конечно, сами более или менее изменённые.

Так, например, от доклеточных существ до нашего времени остались бактерии и также сине-зелёные водоросли, о которых подробнее будет рассказано в следующей главе.

Фильтрующиеся вирусы — это, возможно, пережиток древних живых белков, через которые когда-то прошло развитие жизни на земле.

Ступень одноклеточных существ оставила нам богатый мир одноклеточных растений и животных, которые, как уже было упомянуто, во множестве встречаются в болотной воде. Они, вообще, широко распространены в водной среде, но многие из них живут также и на суше, например, в почве. Я уже упоминал, что некоторые одноклеточные животные, именно инфузории, достигли очень сложного строения, насколько это было возможно в пределах одной клетки.

Но особенно большого разнообразия и сложного строения достигли многоклеточные растения и животные. У растений получили большое развитие и распространение в морях и океанах разнообразные морские водоросли, а на суше — грибы, лишайники, мхи (лиственные и печёночные), папоротникообразные растения, голосеменные (к которым относятся хвойные породы) и, наконец, покрытосеменные, или цветковые растения. Цветковые растения представляют собой высшую ступень развития растительного мира.

А у животных какое богатство и разнообразие представляют ныне живущие на земле многоклеточные животные! Из них назовём здесь губки, кишечнополостные (гидры, медузы и другие), иглокожие (морские лилии, морские звёзды, морские ежи и другие), черви, червеобразные мягкотелые, или моллюски, членистоногие (раки, пауки, насекомые) и хордовые (рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие).

Высшей ступенью животного мира следует считать млекопитающих и среди них обезьян. От особых высокоразвитых обезьян произошёл человек, который неизмеримо высоко поднялся над всем животным миром.

Всего на земле в настоящее время насчитывается различных видов растений приблизительно пятьсот тысяч, а животных один миллион. А сколько ещё видов растений и животных совершенно исчезло с лица земли, вымерло! Вот какое богатство и разнообразие сложных живых существ развилось из мельчайших невидимых глазу капелек живой слизи, которые миллиарды лет назад зародились на земле. 

Происхождение растений и животных

Три мира живой природы

Первые самые простые существа, или живые белки,  которые образовались на земле, ещё нельзя было отнести ни к растениям, ни к животным. Эти живые белки возникали из более простых неживых белков, и за их же счёт возобновляли своё тело, то есть питались органической пищей. Тогда органические белковые вещества были той материальной средой, которая одновременно и рождала и питала новые самые простые организмы.

Гораздо позднее произошло разделение всего живого мира на два главных потока — растений и животных. Но всё-таки это разделение началось чрезвычайно давно, ещё в доклеточном периоде развития жизни на земле. Появление зелёных растений имело для всего нашего земного мира совершенно исключительное и огромное значение.

Сколько раз каждый из нас с удовольствием смотрел на наши зелёные леса, луга, поля и вдыхал их свежий живительный воздух. Отчего происходит их зелёный цвет и нужна ли растениям для чего-нибудь их зелень? Зелёный цвет растений происходит оттого, что они содержат в себе особое зелёное вещество — хлорофилл. Это слово в переводе с греческого языка означает листовая зелень.

Известно, как растения тянутся к свету и подставляют солнечным лучам свои зелёные листья. Подумайте, как велика вся та зелёная поверхность растительности, которая облучается солнцем на наших полях, лугах и лесах. Один из величайших наших учёных К. А. Тимирязев приводит такой расчёт. Если на одном гектаре посева люцерны вычислить, какова общая поверхность её зелёных листьев, облучаемых солнцем, то получится цифра в восемьдесят пять гектаров.

А войдите в тенистый лиственный лес. И вверху, и в середине, и внизу вы найдёте бесчисленное множество зелёных листьев, которые подставляются солнцу. Живая природа растений как будто решает здесь задачу захватить возможно больше солнечных лучей.

Наш советский учёный академик В. И. Вернадский делает замечательный подсчёт, какую общую площадь на суше и в воде занимают части растений с зелёным веществом — хлорофиллом при наиболее полном своём развитии, например, когда деревья несут всё богатство своих зелёных листьев и все другие растения достигают своего полного развития. Оказалось, что при таких условиях общая площадь всех зелёных частей растений больше поверхности всего земного шара в сто — пятьсот раз! Вот как гигантски велика общая поверхность зелёных растений, воспринимающая солнечный свет.

И не напрасно растения обращают такую гигантскую свою поверхность к солнцу. Растения при помощи зелёного вещества — хлорофилла — поглощают определённые лучи солнца и используют их для того, чтобы вырабатывать в своём теле из углекислого газа и воды ценные питательные вещества — сахар и крахмал. Подумайте только — углекислый газ и вода! Это сравнительно простые минеральные вещества, а зелёные растения обладают замечательной способностью превращать их в сахар, крахмал. Пусть человек, который уносит с огорода тяжёлый мешок клубней картофеля, переполненных крахмалом, подумает о том, что этот крахмал, столь драгоценный источник его питания, образовался первоначально в зелёных листьях картофельного растения из углекислого газа и воды при помощи солнечных лучей и хлорофилла. Вообще, в отличие от животных, зелёные растения могут приготовлять в своём теле всю нужную для них органическую пищу за счёт углекислого газа, воды и некоторых минеральных солей.

Образование сахара и крахмала — это только первая ступень в приготовлении упомянутой органической пищи. Но растения могут образовывать в своём теле также жиры или жирные масла, белки, витамины. Кроме того, в теле растений образуется ещё множество других органических веществ, которые служат для построения их тела, для их химической защиты и для многого другого. Вспомните, например, сколько в стволе большого столетнего дуба или сосны накопляется древесины.

Но что же происходит с теми солнечными лучами, которые зелёные растения поглощают в таком изобилии и используют для приготовления себе органической пищи?

Эти солнечные лучи в растениях не пропадают. Они только переходят в скрытое состояние и накапливаются в тех продуктах, которые при их помощи образовались в зелёных растениях.

www.booklot.ru

История жизни на Земле [Развитие, Эволюция]

Возникновение жизни на Земле

см. Теории происхождения жизни, Биохимическая эволюция

Ранее учёные полагали, что живое произошло от живо­го. Споры бактерий были занесены из космоса. Одни бактерии создавали органические вещества, другие потребляли и разрушали их. В результате возникла древнейшая экосистема, компоненты которой были связаны круговоротом веществ.

Современные учёные доказали, что живое произошло из неживой природы. В водной среде из неорганических веществ под действием энергии Солнца и внутренней энергии Земли образовались органические вещества. Из них сформировались древнейшие организмы — бактерии.

Возникновение материков

см. Теория Вегенера

Развитие жизни на Земле

см. Геохронологическая шкала

В исто­рии развития жизни на Земле выделяют несколько эр.

Архей

см. Архей, Атмосфера Земли#История образования атмосферы

Первыми организмами были прокариоты. В архейской эре уже существовала био­сфера, состоявшая в основном из прокариот. Самые первые живые сущест­ва планеты — бактерии. Некото­рые из них были способны к фо­тосинтезу. Фотосин­тез осуществляли цианобактерии (сине-зелёные).

Протерозой

см. Протерозой, Происхождение многоклеточных

По мере увеличения содержания кислорода в атмосфере начали появляться эукариотные организмы. В протерозое в водной среде возникли однокле­точные растения, а затем одноклеточные животные и грибы. Важным событием протерозоя было возникно­вение многоклеточных организмов. К концу протеро­зоя уже появились различные типы беспозвоночных и хордовых животных.

Палеозой

см. Палеозой, Эволюция многоклеточных#Кембрийский взрыв, Скелетная революция, Эволюция водных животных в палеозое, Выход растений и животных на сушу

Растения

Постепен­но на месте тёплых мелководных морей возникала су­ша. В результате от многоклеточных зелёных водорос­лей произошли первые наземные растения. Во второй половине палеозоя возникли леса. Они состояли из древних папоротников, хвощей и плаунов, которые размножались спорами.

Животные

В начале палеозоя морские беспозвоночные достиг­ли расцвета. В морях развивались и распространялись позвоночные животные — панцирные рыбы.

В палеозое появились первые наземные позвоночные — древнейшие земноводные. От них в конце эры произошли первые рептилии.

Самыми много­чис­лен­ными в морях палеозоя (эры древней жизни) были трилобиты — иско­паемые членистоногие, внешне похожие на гигантских мокриц. Трилобиты — существовали в начале палеозоя, полностью вымерли 200 млн лет назад. Они плава­ли и ползали в мелководных заливах, питаясь растениями и останками животных. Существу­ет предположение, что были среди трилобитов и хищники.

Самыми первыми среди жи­вотных стали осваивать сушу паукообразные и гигантские ле­тающие насекомые — предки современных стрекоз. Размах их крыльев достигал 1,5 м.

Мезозой

см. Мезозой, Динозавры, Древние морские ящеры, Летающие ящеры, Мел-палеогеновое вымирание

В мезозое климат стал более засушливым. Посте­пенно исчезали древние леса. На смену споровым пришли растения, размножающиеся семенами. Среди животных достигли расцвета пресмыкающиеся, в том числе динозавры. В конце мезозоя многие виды древ­них семенных растений и динозавры вымерли.

Животные

Самыми крупными из динозав­ров были брахиозавры. Они достигали более 30 м в длину и весили 50 т. Эти динозавры имели громадное туловище, длинные хвост и шею, малень­кую голову. Если бы они жили в наше время, то были бы выше пятиэтажных домов.

Растения

Самые слож­но­орга­ни­зо­ван­ные растения — цветковые. Они появились ещё в середине ме­зозоя (эры средней жизни). Материал с сайта http://wikiwhat.ru

Кайнозой

см. Кайнозой, Гиппарионовая фауна, Великое оледенение

Кайнозой — время расцвета птиц, млекопитаю­щих, насекомых и цветковых растений. У птиц и млекопитающих в связи с более совершенным строе­нием систем органов возникла теплокровность. Они стали менее зависимы от условий среды обитания и широко распространились на Земле.

Происхождение человека

см. Эволюция человека

Периоды мировой истории

Картинки (фото, рисунки)

  • 2.6. История развития жизни
На этой странице материал по темам:
  • Доклад как развивиалась жизнь на земле

  • Как эволюционировали живые оршанизмы

  • История развития жизни на земле определить группы растений и животных

  • Как ращвивалась жизнь на земле

  • Проект история развития жизни на земле

Вопросы к этой статье:
  • Каковы представления о воз­никновении жизни на Земле?

  • Расскажите о научных подходах к проис­хождению жизни на Земле.

  • Как развивалась жизнь на на­шей планете?

  • Какие важные события для дальнейшей эволюции живой природы произошли в архее и протерозое?

  • Как изменилась жизнь в па­леозое?

  • Какие группы организмов до­стигли расцвета в мезозое и кайнозое?

wikiwhat.ru

10.6. Появление царств растений и животных

В процессе формирования биосферы эукариоты еще в протерозое разделились на растительные и животные клетки. Как считает большинство биологов, их следует различать: 1) по структуре клеток и их способности к росту, 2) способу питания, 3) способности к движению. При этом отнесение живого существа к тому или иному царству следует проводить не по каждому отдельному основанию, а по совокупности всех трех признаков, поскольку между растениями и животными существуют переходные типы, обладающие свойствами как растений, так и животных. Так, например, кораллы, моллюски, речные губки всю жизнь остаются неподвижными, как растения, но по двум другим признакам их относят к животным. Существуют насекомоядные растения, которые по способу питания относятся к животным. Есть также живые организмы, которые питаются, как растения, а двигаются — как животные. В настоящее время на Земле существует 500 тыс. видов растений и 1,5 млн. видов животных, в том числе позвоночных — 70 тыс., птиц — 16 тыс., млекопитающих — 12 540 видов.

271

Образование и развитие растений

Растительные клетки покрыты жесткой целлюлозной оболочкой, которая, с одной стороны, защищает их от неблагоприятных воздействий окружающей среды, но с другой стороны, не дает им свободно перемещаться в поисках пищи. Эволюция растительных клеток была связана с совершенствованием процесса фотосинтеза, дававшего им все необходимые питательные вещества. Тем не менее, среди растений существовали не только автотрофы, но и гете-ротрофы, взаимно дополнявшие друг друга.

Самыми первыми растениями на планете были одноклеточные водоросли разных типов. Они пришли на смену безраздельно господствовавшим прокариотам: сине-зеленым водорослям и бактериям. На водорослях природа впервые опробовала половое размножение, т.е. слияние ДНК двух индивидов с последующим перераспределением генетического материала, вследствие чего потомство получается похожим на своих родителей, но не идентичным им. Это событие произошло около 900 млн. лет назад.

Затем, 700—800 млн. лет назад, появились первые многоклеточные организмы, также относящиеся к водорослям — обширной группе низших водных растений, содержащих хлорофилл и вырабатывающих органические вещества путем фотосинтеза. Именно на эти водоросли приходится наиболее длительный этап в развитии зеленых растений. Они же сыграли роль гигантского генератора свободного кислорода в атмосферу Земли.

Событием огромной важности стал выход растений на сушу, совершившийся в силуре, около 400 млн. лет назад. Этот факт стал, в свою очередь, предпосылкой для выхода на сушу животных. Считается, что еще до массового выхода растений на сушу в отдельных местах появлялись локальные участки жизни. Такими «островками» жизни могли стать побережья мелководных заливов и лагун, места, где вода периодически отступала, оставляя растения. Именно так появились растения, нижняя часть которых находилась в воде, а верхняя — в воздухе, под прямыми лучами Солнца. Затем растения смогли развить корневую систему, которая позволяла им использовать грунтовые воды.

В новых условиях фотосинтез становился более совершенным, так как солнечная энергия не поглощалась водой. Чтобы защититься от высыхания, растениям пришлось сформировать восковидную водонепроницаемую оболочку. Кроме того, произошла перестройка организмов, в них появились новые органы и ткани, изменились способы размножения, распространения и т.д. Таким образом, в растительных организмах появились корень, стебель, лист, проводящие системы, покровные ткани.

272

Первыми на сушу вышли псилофиты — споровые растения, похожие на плауны. У них еще не было корней и почти не было листьев. Псилофиты состояли из длинных ветвящихся зеленых стеблей и покрывали влажную почву суши настоящими зелеными коврами.

С появлением мхов и папоротников количество кислорода в атмосфере значительно увеличилось. Кроме того, в период своего расцвета мхи и папоротники создали большое количество пищевых веществ, необходимых для возникновения и развития сухопутных позвоночных животных. В это же время (девон, карбон и пермский периоды — 400—230 млн. лет назад) накапливается огромное количество каменного угля, появляются голосеменные растения. С этого момента поверхность материков стала приобретать современный облик.

В мезозое (около 200 млн. лет назад) широко распространяются хвойные, цикадовые, а в меловой период (около 100 млн. лет назад) появляются цветковые растения. Появление цветковых растений стимулировало расцвет насекомых, играющих значительную роль в их опылении.

После этого лиственные леса стали сосуществовать с появившимися ранее хвойными лесами, давшими, в свою очередь, приют папоротникам, боящимся открытого солнца. Таким образом, в современном растительном мире наряду с высокоорганизованными растениями сохранились представители более ранних эпох, которых можно назвать «живыми ископаемыми».

Образование и развитие животных

Животная клетка в отличие от растительной имеет эластичную оболочку и поэтому не теряет способности к передвижению. Таким образом, животные клетки имеют возможность активно искать себе пищу. Эволюция животных клеток шла в направлении совершенствования способов их передвижения и способов поглощения и выделения крупных частиц через оболочку. Сначала пищей служили крупные органические фрагменты, затем куски мертвой ткани и, наконец, поглощение и переваривание целых организмов, свойственное хищникам. Их появление резко интенсифицировало естественный отбор.

Первые примитивные представители животного царства ведут свое начало от одноклеточных простейших организмов, отделившихся от общего ствола с растениями. К сожалению, мы почти ничего не можем сказать о них, так как их ископаемые остатки практически не сохранились. Судя по всему, первые представители животного мира имели общие признаки с одноклеточными зелеными водорослями. Подобные организмы (радиолярии) и сегодня составляют значительную часть планктона морей и океанов.

273

Возникновение животной клетки было связано с переходом к гетеротрофному способу питания. Но он шел постепенно, поэтому существовали и продолжают существовать переходные формы между растениями и животными. Среди них — жгутиконосцы, которые, как животные, обладают жгутиками — органами передвижения, а как растения — автотрофным или смешанным способом питания. Так, например, и в наши дни существует эвглена зеленая, которая при хорошем освещении и наличии минеральных веществ в воде ведет себя как типичное растение. Но в темноте или при неблагоприятных условиях она теряет хлорофилл и подобно животному начинает усваивать из раствора органические вещества.

Как и у растений, важнейшим этапом в эволюции животных стало появление многоклеточных организмов. Скорее всего, переход к многоклеточности был осуществлен через колонии, в которые объединялись некоторые одноклеточные организмы. Вначале все клетки в таких колониях были одинаковыми, но затем началась их дифференциация в соответствии с выполняемыми функциями. Массовое появление многоклеточных животных произошло в позднем кембрии. Судя по всему, это были многочисленные морские беспозвоночные организмы — медузоподобные плавающие формы, кишечнополостные, морские черви.

Дальнейшая эволюция многоклеточных организмов шла в направлении совершенствования способов их передвижения, дыхания, лучшей координации деятельности клеток и т.д.

На следующую ступень в своем развитии животное царство поднялось с появлением твердых частей тела — раковин и внутреннего скелета. В кембрийских морях были ракообразные, губки, кораллы, иглокожие, моллюски, трилобиты. Твердый скелет служил опорой этим организмам, способствовал увеличению их размеров, делал их более прочными, защищал от физических повреждений. Кроме того, твердый скелет мог служить защитой от хищников, которые появились около 450 млн. лет назад.

Около 500 млн. лет появились первые позвоночные животные. Это наиболее высокоорганизованная, обширная и разнообразная группа животных, включающая рыб, земноводных, пресмыкающихся и млекопитающих. Первые позвоночные появились в воде — ими были рыбы. Современные рыбы делятся на два больших класса — хрящевых и костистых. К хрящевым относятся акулы и скаты. Некоторые виды акул появились еще в девоне, около 400 млн. лет назад, и с тех пор не менялись. Костистых рыб сегодня большинство, они преобладают в современных водоемах. Для костистых рыб характерно наличие плавательного пузыря, регулирующего глубину их погружения.

Следующий шаг в эволюции животных связан с появлением двоякодышащих рыб, живших в периодически высыхавших водоемах.

274

Легкие помогали им выжить в периоды засухи. В наши дни сохранилось лишь три вида таких рыб. Некоторые пресноводные двоякодышащие рыбы дали начало земноводным, которые могут далеко уходить от природных водоемов, но для размножения должны возвращаться в воду. Это произошло в девоне.

Тогда же, очевидно, появились первые насекомые. У них роль каркаса играл не внутренний скелет, а наружная хитиновая оболочка. Кроме того, насекомые обладают сложной нервной системой, с большим количеством относительно самостоятельных нервных центров. В их жизни большую роль играют врожденные реакции (у позвоночных — идет развитие головного мозга, что дает возможность преобладания условных рефлексов над безусловными). Предки насекомых, пауков и скорпионов вышли на сушу сразу вслед за растениями.

Выход животных на сушу был связан с серьезнейшими изменениями их форм. Ведь на суше вес тел больше, чем в воде, в воздухе не содержится питательных веществ, которые есть в воде в растворенном виде. Кроме того, воздух обладает иной свето- и звукопроводностью, а концентрация кислорода в нем выше, чем в воде. Таким образом, жизнь должна была адаптироваться к новым условиям, выработав соответствующие приспособления. Первыми, полностью приспособившимися к условиям суши позвоночными, стали рептилии. Их яйца были покрыты твердой скорлупой, предотвращающей высыхание, и снабжены необходимыми запасами пищи и кислорода для развития эмбриона. Первые рептилии были похожи на небольших ящериц. Они начали активное завоевание суши в карбоне (350—285 млн. лет назад). В пермском периоде (285—230 млн. лет назад) они полностью преобладали на суше.

Мезозойская эра (230—67 млн. лет назад) также проходит под властью рептилий, среди которых были как хищники, так и травоядные. В триасовом периоде (230—195 млн. лет назад) появились динозавры, размеры которых сильно варьировались — от мелких животных, величиной с кошку, до 30-метровых гигантов, весящих 40—50 т. Динозавры жили на суше (тиранозавры, игуанодоны, стегозавры, трицератопсы и др.), в воде (бронтозавры, диплодоки, ихтиозавры, плезиозавры), в воздухе (птерозавры, птеродактили).

В юрском периоде (195—137 млн. лет назад) от одной из ветвей рептилий появились птицы, которых Т. Гексли, в силу их родства с рептилиями, назвал «взлетевшими рептилиями». Птицы, как и рептилии, несут яйца, но в меньших количествах, они заботятся о своем потомстве и имеют постоянную высокую температуру тела. Переходной формой между рептилиями и птицами стал археоптерикс.

В конце мелового периода (67 млн. лет назад) произошло массовое вымирание мезозойских рептилий. Причина этого до сих пор

275

не ясна, хотя существуют многочисленные версии, среди которых — возможное падение гигантского метеорита, вызвавшее глобальное похолодание и изменение климата. В новых условиях преимущество в естественном отборе получили птицы, а также млекопитающие, возникшие в триасовом периоде. Но в те времена они были небольшими, преимущественно насекомоядными животными. Лишь в кайнозойскую эру начался период их господства на Земле. Это было связано с тем, что в условиях похолодания важнейшим условием выживания стала теплокровность, обеспечившая постоянную высокую температуру тела и постоянство внутренней среды организма. Поскольку млекопитающие являются живородящими животными и вскармливают своих детенышей молоком, это обеспечивает лучшую сохранность молодняка и дает возможность размножения в разнообразных условиях. Кроме того, у них развитая нервная система, способная обеспечить разнообразные формы активного приспособления к окружающей среде.

Первые насекомоядные млекопитающие дали начало плацентарным и сумчатым млекопитающим, которые развивались одновременно. В первой половине кайнозоя господствовали сумчатые. Но позже, в неогеновом периоде (27—3 млн. лет назад), они были вытеснены более высокоорганизованными плацентарными млекопитающими. Поэтому в наши дни сумчатые сохранились лишь в Австралии, Новой Гвинее и Южной Америке. Среди плацентарных млекопитающих были китообразные и грызуны, летучие мыши, приматы и т.д. Существовавшие в то время хищнокопытные разделились, дав начало хищникам и копытным животным. Во второй половине кайнозоя плацентарные млекопитающие стали господствующей группой животных.

Эволюция млекопитающих проходила в течение всей кайнозойской эры. Большую роль в этом сыграло разделение континентов, что привело к обособлению животных и формированию частично изолированных зоогеографических областей, в которых до сих пор сохранились некоторые реликтовые животные. Так, в эпоху господства сумчатых отделилась Австралия, сохранившая представителей этих животных до наших дней. Отделившаяся позже Южная Америка сохранила реликты начала кайнозойской эры, среди которых опоссумы, броненосцы и ленивцы.

Важнейшим этапом в эволюции жизни на Земле стало появление отряда приматов, предки которых были известны с мелового периода. Они походили на современных лемуров. Около 80 млн. лет назад появились приматы, обитавшие на деревьях. В палеогене (67—27 млн. лет назад) приматы разделились на низших и человекообразных обезьян. Те, в свою очередь, дали начало непосредственным предкам человека.

276

/

Таким образом, постепенно в кайнозое сформировались предпосылки, необходимые для появления человека, в частности, такой предпосылкой явился стадный образ жизни, который вели некоторые млекопитающие. Стадный образ жизни сформировал привычку будущего социального общения, проходившего без потери индивидуальности его членов. Это был значительный шаг вперед по сравнению с насекомыми, которые тоже жили большими коллективами, но при этом полностью теряли свою индивидуальность. Следующий шаг Жизнь на Земле сделала уже с появлением человека разумного — существа, обладающего способностью к целенаправленному изменению окружающего мира, созданию собственного искусственного мира культуры.

Литература для самостоятельного изучения

  1. Афанасьев В. Г. Мир живого: системность, эволюция и управление. М., 1986.

  1. Барг О.А. Живое в едином мировом процессе. Пермь, 1993.

  2. Вернадский В.И. Начало и вечность жизни. М., 1989.

  1. Войткевич Г. В. Возникновение и развитие жизни на Земле. М., 1988.

  1. Войткевич Г.В. Рождение Земли. Ростов-на-Дону, 1996.

  2. Ганты Т. Жизнь и ее происхождение. М., 1984.

  3. История биологии с начала XX века до наших дней. М., 1975.

  4. Колчинский Э.И. Эволюция биосферы. Л., 1990.

  5. Опарин А.И. Возникновение жизни на Земле. М., 1957.

  1. Проблемы возникновения и сущности жизни. М., 1973.

  2. Фолсом К.Э. Происхождение жизни. М., 1982.

  3. Шредингер Э. Что такое жизнь? М., 1972.

  4. Югай Г.А. Общая теория жизни. М., 1985.

studfiles.net

Появление первых живых организмов — Мегаобучалка

 

В архейской эре возникли первые живые организмы. Они были гетеротрофами и в качестве пищи использовали органические соединения «первичного «бульона». Первыми жителями нашей планеты были анаэробные бактерии. Важнейший этап эволюции жизни на Земле связан с возникновением фотосинтеза, что обуславливает разделение органического мира на растительный и животный. Первыми фотосинтезирующими организмами были прокариотические (доядерные) цианобактерии и синезеленые водоросли. Появившиеся затем эукариотические зеленые водоросли выделяли в атмосферу из океана свободный кислород, что способствовало возникновению бактерий, способных жить в кислородной среде. В это же время – на границе архейской протерозойской эры произошло еще два крупных эволюционных события – появились половой процесс и многоклеточность.

Чтобы яснее представить значение двух последних ароморфозов, остановимся на них подробнее.Гаплоидные организмы (микроорганизмы , синезеленые) имеют один набор хромосом. Каждая новая мутация сразу же проявляется у них в фенотипе. Если мутация полезна, она сохраняется отбором, если вредна, устраняется отбором. Гаплоидные организмы непрерывно приспосабливаются к среде, но принципиально новых признаков и свойств у них не возникает. Половой процесс резко повышает возможность приспособления к условиям среды, вследствие создания бесчисленных комбинаций в хромосомах. Диплоидность, возникшая одновременно с оформленным ядром, позволяет сохранить мутации в гетерозиготном состоянии и использовать их как резерв наследственной изменчивости для дальнейших эволюционных преобразований. Кроме того, в гетерозиготном состоянии многие мутации часто повышают жизнеспособность особей и, следовательно, увеличивают их шансы в борьбе за существование.

Возникновение диплоидности и генетического разнообразия одноклеточных эукариот, с одной стороны, обусловили неоднородность строения клеток и их объединение в колонии, с другой – возможность «разделения труда» между клетками колонии, т.е. образование многоклеточных организмов. Разделение функций клеток у первых колониальных многоклеточных организмов привело к образованию первичных тканей – эктодермы и энтодермы, что в дальнейшем дало возможность для возникновения сложных органов и систем органов. Совершенствование взаимодействия между клетками сначала контактного, а затем с помощью нервной и эндокринной систем обеспечило существование многоклеточного

организма как единого целого.

Пути эволюционных преобразований первых многоклеточных были различны. Некоторые перешли к сидячему образу жизни и превратились в организмы типа губок. Другие стали ползать с помощью ресничек. От них произошли плоские черви. Третьи сохранили плавающий образ жизни, приобрели рот и дали начало кишечнополостным.

 

3.История Земли, со времени появления на ней органической жизни и до появления на ней человека, разделяется на три больших периода - эры, резко отличающиеся одна от другой, и носящих названия: Палеозой - древняя жизнь, Мезозой - средняя, Неозой - новая жизнь.

Из них самый большой по времени - палеозой, он иногда разделяется на две части: ранний палеозой и поздний, так как астрономические, геологические, климатические и флористические условия позднего резко отличаются от раннего. В первый входят: кембрийский, силурийский и девонский периоды, во второй - каменноугольный и пермский.

До палеозоя была архейская эра, но тогда еще не было жизни. Первая жизнь на Земле - это водоросли и вообще растения. Первые водоросли зародились в воде: так представляется современной науке возникновение первой органической жизни, и только позже появляются моллюски, питающиеся водорослями.

Водоросли переходят в наземную траву, гигантские травы переходят в травовидные деревья палеозоя.

В девонский период на Земле появляется буйная растительность, а в воде -жизнь в виде ее мелких представителей: простейших, трилобитов и т.д. Теплый климат - на всем земном шаре, ибо нет еще современного неба с его солнцем, луной и звездами; все было покрыто густым, слабопроницаемым, мощным туманом из водяных паров, еще в колоссальном количестве окружающих землю, и только часть осела в водные бассейны океанов. Земля несется в холодном мировом пространстве, но тогда она была одета в теплую, непроницаемую оболочку. Вследствие парникового (оранжерейного) эффекта весь ранний палеозой, включая даже и каменноугольный период, имеет тепловодную флору и фауну по всей земле: и на Шпицбергене, и в Антарктике - всюду залежи каменного угля, являющегося продуктом тропического леса, всюду была тепловодная морская фауна. Тогда лучи солнца не проникали непосредственно на землю, но преломлялись под известным углом через пары и освещали ее тогда иначе, чем сейчас: ночь была не такой темной и не такой длинной, а день не таким ярким. Сутки были короче нынешних. Не было ни зимы, ни лета, нет еще астрономических и геофизических причин для этого. Залежи каменного угля состоят из деревьев, не имеющих годичных колец, их структура трубчатая, как у травы, а не кольцевая. Значит, времен года не было. Не было и климатических поясов, тоже из-за парникового эффекта.

Современная палеонтология уже достаточно изучила все виды живых организмов кембрийского периода: около тысячи различных видов моллюсков, но есть основания полагать, что все же первая растительность и даже первые моллюски появились в конце архейской эры.

В следующий, силурийский период, количество моллюсков увеличивается до 10000 разновидностей, а в девонский период появляются двоякодышащие рыбы, то есть рыбы, не имеющие позвоночника, но покрытые панцирем, как переходная форма от моллюсков к рыбам. Они дышали и жабрами, и легкими. Они делают попытку превратиться в обитателей суши, но не им приходится осуществить это. Переход из моря на сушу выполнят амфибии, из класса позвоночных типа земноводных ящеров.

Первый представитель ящеров - археозавр - появляется в конце палеозоя, развитие получает в начале мезозойской эры, в триасовый период.

Отличительные свойства палеозоя: свет не был отделен от тьмы, промежуточное состояние, среднее между светом и тьмой, между днем и ночью, частично продлевается до начала карбона. На небе не было видно светил. Не было времен года и климатических поясов.

Доказательства: отсутствие годичных колец на деревьях палеозоя, кроме последнего, пермского периода, когда они впервые появляются исчезновение с этого времени всех травовидных деревьев с трубчатой структурой ствола ; распространение тропической растительности по всей поверхности земли, включая полюсы ; такая же теплолюбивая фауна по всей земле ; образование в гигантских количествах залежей каменного угля, как результат гибели травовидных лесов, не приспособленных к прямым лучам солнца и естественно обуглившихся и погибших от ультрафиолета и солнечной радиации, как обугливается трава в жаркое лето при засухе.

С пермского периода появляются климатические пояса и распределение поздних флоры и фауны, по-разному приспособившихся к климатическим поясам.

Следующему периоду в жизни Земли соответствует вся мезозойская эра, то есть периоды: триасовый, юрский и меловой. Это был самый расцвет животного царства. Самые разнообразные и причудливые формы рептилий населяли Землю. Они были как в морях, так и на суше и в воздухе. Необходимо отметить, что весь класс насекомых появился еще в конце палеозоя, причем они были во много раз крупнее, чем их современные потомки.

Первые птицы появляются в юрский период. Размножались не только количественно, но и в разнообразные виды. У одного вида птиц рождались птенцы со своими особенностями, которые давали начало новому виду птиц, у которых в свою очередь появлялись птенцы, не совсем на них похожие. Так развивался многообразный мир живых существ. В некоторые моменты были совершенно удивительные метаморфозы.

Палеонтологи знают многие экземпляры разных ступеней в развитии птиц и ни одного промежуточного вида между ними: это птеродактили, археоптериксы и совершенно развившиеся птицы.

Птеродактили - это полуптицы, полурептилии. Это ящер, у которого сильно развились пальцы лап и между ними появились пленки, как у летучей мыши. Но следующее поколение, сохранившее тот же длинный позвоночник, по обе стороны от которого выросли перья, резко отличается от предшественников. Туловище и крылья покрылись перьями, но на крыльях остались когти для цепляния за ветви.

Голова археоптерикса - морда зверя, унаследованная от птеродактиля, с острыми крупными зубами и мягкими губами. И только в следующем поколении отпадает позвоночный хвост и голова становится головой птицы с клювом.

Наступает последняя эра - неозойская. Она включает в себя третичный и ледниковый (четвертичный) периоды. Человек появляется к концу ледникового периода. Именно в неозойскую эру появились млекопитающие. Это почти современный нам мир животных. Фауну того времени можно в некоторой степени увидеть в Африке, которой не коснулся ледник.

Самым большим вопросом является для многих вопрос об обезьянах. Большинство ученых склонны считать, что обезьяна никоим образом не может быть предшественником человека; но некоторые говорят, что должен быть какой-то общий предок. Но этого общего предка пока не нашли.

 

Геохронологическая таблица Земли

Эры и периоды Характерные особенности
Кайнозойская эра (новой жизни) Антропоген Неоген Палеоген Появление и развитие человека. Животный и растительный мир принял современный облик. Господство млекопитающих, птиц. Появление хвостатых лемуров, долгопятов, позднее -парапитеков, дриопитеков. Бурный расцвет насекомых. Продолжается вымирание крупных пресмыкающихся. Исчезают многие группы головоногих моллюсков. Господство покрытосеменных растений.
Мезозойская эра (средней жизни) Меловой Юрский Появление высших млекопитающих и настоящих птиц, хотя и зубастые птицы еще не распространены. Преобл . костистые рыбы. Сокращение папоротников и голосе - менных. Появление и распространение покрытосем . Господство пресмыкающихся. Появление археоптерикса. Процветание головоногих моллюсков. Господство голосеменных.
Триасовый Начало расцвета пресмыкающихся. Появление первых млекопитающих, настоящих костистых рыб.
Палеозойская эра (древней жизни) Пермский Каменноугольный Девонский Силурийский Ордовийский, Кембрийский Быстрое развитие пресмыкающихся. Возникновение зверозубых пресмыкающихся. Вымирание трилобитов. Исчезновение каменноугольных лесов. Богатая флора голосеменных. Расцвет земноводных. Возникновение первых пресмыка -ющихся. Появление летающих форм насекомых, пауков, скорпионов. Заметное уменьшение трилобитов. Расцвет папоротникообразных. Появление семенных папоротн . Расцвет щитковых. Появление кистеперых рыб. Появл . стегоцефалов. Распространение на суше споровых. Пышное развитие кораллов, трилобитов. Появление бес -челюстных позвоночных - щитковых. Выход растений на сушу -псилофиты. Широкое распространение водоросл . Процветают морские беспозвоночные. Широкое распространение трилобитов, водорослей.
Протерозойская (ранней жизни) Органические остатки редки и малочисленны, но относятся ко всем типам беспозвоночных. Появление первичных хордовых -подтипа бесчерепных.
Архейская (самая древняя в истории Земли) Следы жизни незначительны.

 

megaobuchalka.ru

Как возникла жизнь на Земле

Все экологические ниши, пригодные для жизни, заняты биосферой. Возникла биосфера одновременно с возникновением жизни на Земле, первоначально (около 4 млрд. лет тому назад) в виде примитивных биоценозов (протобиоценозов) в первичном Мировом океане. Около 450 млн. лет назад биосфера начала занимать сушу, где, несмотря на гораздо более жесткие, чем в океане, экологические условия, эволюционировала в направлении максимального видового разнообразия. В результате соотношение числа видов животных и растений в Мировом океане и на суше составило в среднем 1: 5. Общая биомасса биосферы составляет около 85 – 100 млрд. т сухого органического вещества, в т.ч. в Мировом океане – 30 млрд. т.

Что касается возникновения жизни на земле и происхождения человека, то по этому вопросу ученые до сих пор не пришли к единому мнению. Существуют различные теории, имеющие свои доказательства правоты, и в то же время, многие ученые находят те или иные доводы, разрушающие эти теории.

Как возникла жизнь на Земле, как появились растения, животные и сам человек, всегда интересовало людей. Многие века и тысячелетия слагались красивые легенды, по своему объяснявшие эту тайну. Религии разных народов рассказывали о творческом могуществе Бога (бог Солнца, Иегова, Бог-Отец, Аллах), создавшего небо и землю, растения и животных, воды и человека. Философы и естествоиспытатели выдвигали различные гипотезы происхождения жизни. Некоторые из них считали, что жизнь вечна так же, как и мертвая природа: «Omnia vivum e vivo» (все живое из живого). Другие видя, как копошатся в испорченном мясе неизвестно откуда взявшиеся «червячки» – личинки мух, считали, что живые организмы, даже такие сложные как насекомые, способны «самозарождаться», появляться непосредственно из мертвой природы. Это мнение опровергнул Луи Пастер. Он доказал, что если в воду, бульон, мясо не попадут споры бактерий, растений, яйца насекомых и т.п., то никакого «самозарождения» не произойдет. В герметически закрытых сосудах, в стерилизованной среде живые организмы не появляются. Так как же и когда они возникли?

В ХХ веке развитие всех естественных наук привело к новым гипотезам в изучении происхождения жизни.

В 1924–1926 гг. В. И. Вернадский опубликовал свои первые труды о биосфере. В них он дал объяснение разнообразным фактам, наблюдениям над природой, наметил пути дальнейших исследований. Ученый обобщил все это, и в результате возникло целостное учение о биосфере.

Живые организмы разнообразны и распространены по всему земному шару в почве и в горячих источниках, на суше и в океане. В. И. Вернадский писал в книге «Биосфера»: «Живое вещество более или менее распределено на земной поверхности, оно образует на ней тонкий, но сплошной покров, в котором концентрирована свободная химическая энергия, выработанная им из энергии Солнца. Этот слой есть земная оболочка, биосфера, которая представляет одну из характерных черт организации нашей планеты». Понятие биосферы, т.е. области жизни, введено в биологию в начале ХIХ века знаменитым французским ученым Жаном Батистом Ламарком, а в геологию – в конце ХIХ века австрийским геологом Эдуардом Зюссом. Но учение о биосфере – тонком слое воздуха, в котором существует жизнь, – разработал В. И. Вернадский.

В. И. Вернадский отмечает наиболее характерные черты живой природы: ассиметрию составляющих их молекул и самих организмов (в отличие от строения кристаллов), огромное разнообразие форм и химическую активность.

Сущность своей концепции В. И. Вернадский объяснил так: «На земной поверхности нет химической силы более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом».

Стоит вдуматься только в такие цифры: науке известно около 2500 видов минералов, около 200000 видов растений и более миллиона видов животных. Характеризуя химическую активность организмов, достаточно сказать, что, если участие в каких либо процессах приводит к растворению, изменению или гибели веществ мертвой природы, то для живых организмов обмен веществ – это необходимое условие существования. Ф. Энгельс определил характерные черты жизни так: «…жизнь… заключается по существу в постоянном самообновлении». В работе «Биосфера» В. И. Вернадский писал: «Всякое живое вещество… совокупность «молекулярных вихрей».» «Всякий организм… постоянно неудержимо захватывает прямо или косвенно лучистую энергию Солнца и превращает ее в свободную, т.е. способную производить в работу химическую энергию».

Огромное разнообразие живых организмов проявляется во всем: в величине – невидимые даже под микроскопом вирусы и огромный баобаб, достигающий 18–25 метров в высоту и 45 метров в окружности; в сроках жизни – бактерии, делящиеся каждые 15 минут, и тот же баобаб, живущий 4–5 тыс. лет; степени подвижности – неподвижные растения, прикрепленные ко дну, некоторые водные животные, например губки, и быстролетящие насекомые и птицы; сложности строения – бесклеточная амеба и организмы, состоящие из многих миллиардов различных клеток, работающих согласованно.

Необозримо различие форм и образа жизни живых существ. Тем не менее для всех них характерна общность основных процессов и общность строения молекул, лежащих в основе жизни: белков, нуклеиновых кислот и макроэргических фосфорных соединений, обеспечивающих энергию химических процессов (это главным образом АТФ – аденозинтрифосфат).

Белки и нуклеиновые кислоты имеют чрезвычайно сложное строение. Они состоят из десятков тысяч атомов; белки – из сотен молекул аминокислот, нуклеиновые кислоты – из нуклеотидов. В зависимости от порядка расположения этих составных частей создается возможность почти бесконечного разнообразия белков и нуклеиновых кислот.

Эти молекулы обеспечивают основные жизненные функции: белки-ферменты – обмен веществ, а нуклеиновые кислоты – передачу наследственной информации. Исследования последних десятилетий показали, что эти молекулы способны к самовоспроизведению. Этот принцип матричного синтеза, механизм образования основных жизненных молекул, общий у всех организмов – от амебы до человека.

Общность химического строения и химических процессов у всех организмов, населяющих Землю, говорит об общности происхождения, а разнообразие организмов свидетельствует о длительной эволюции, которую прошла жизнь на Земле.

Английский физик Джон Бернал, занимающийся сейчас и вопросами происхождения жизни, в предисловии к книге, посвященной этой проблеме, пишет: «Биохимия показала, что химические основы земной жизни едины, как бы ни было велико видовое разнообразие, основные механизмы с участием ферментов характерны для всех живых систем на Земле, так же как и многие специфические молекулы, например, гемоглобин и хлорофилл, или…аденозинтрифосфат, играющий ключевую роль в процессах жизнедеятельности». И дальше: «Все это говорит о том, что биология – это наука, изучающая поведение некоторых распространенных химических систем, встречающихся на нашей Земле, которые, хотя и существуют в различных модификациях (за счет чего и создается огромное многообразие типов организмов), в своей основе, однако, едины. В 1946 г. в Принстоне я имел интересную беседу по этому вопросу с Эйнштейном. Из этой беседы я вынес заключение, что жизни присущ еще один элемент, хотя логически и отличный от элементов физики, но ни в коем случае не мистический, это элемент истории. Все явления, изучаемые биологией, образуют непрерывную цепь событий, и каждое последующее звено нельзя объяснить, не принимая в расчет предыдущее. Единство жизни вытекает из всей ее истории и, следовательно, является отражением ее происхождения».

О необходимости исторического подхода при изучении явлений жизни писал еще Климент Аркадьевич Тимирязев в лекциях «Исторический метод в биологии». Он отмечал, что исторический подход диктуется наличием эволюции организмов, постепенным возникновением ныне живущих форм. Эта эволюция доказывается не только данными палеонтологии, но и физиологической и морфологической общностью между далекими, на первый взгляд, видами. К. А. Тимирязев говорил, что исторический подход – основное достижение биологии второй половины ХIХ века.

Для биологии второй половины ХIХ века характерен исторический подход и понимание общности организмов, трактуемых уже на молекулярном уровне.

Каковы же современные гипотезы происхождения жизни на Земле и какую роль в этом процессе мог играть естественный радиационный фон?

Вопрос происхождения жизни, т.е. превращение неживой природы в живую, является одним из кардинальных в биологической науке. Решение его еще далеко от завершения.

По вопросу происхождения жизни на Земле между учеными постоянно ведутся дискуссии. Одни считают, что жизнь на нашей планете имеет сугубо земное происхождение, другие высказываются в пользу ее космического происхождения. Да, в межзвездном пространстве открыто большое число органических молекул, которые, попав в благоприятные условия, могут дать начало зарождению жизни и на планете Земля, и на других.

В пользу космического происхождения жизни на Земле недавно высказались американские ученые Ф. Крик и Л. Оргель. Свое заключение они сделали на основе изучения пропорций содержания химических элементов в окружающей среде и в живых организмах. В результате исследований они установили, что пропорции, химических элементов, в частности содержание молибдена на Земле и в биологических системах, различны. В более старых, удаленных от нас звездных системах содержание молибдена гораздо выше. На основании этого они считают, что жизнь на Земле имеет внеземное происхождение.

Однако большинство ученых – биологов, биохимиков и геологов, занимающихся изучением происхождения жизни на нашей планете, считают, что наша жизнь имеет исключительно земное происхождение. Основоположником этой гипотезы является советский академик А. И. Опарин, обосновавший ее еще в двадцатых годах. По этой гипотезе, как будет показано ниже, земная жизнь зародилась в океане. Пропорции химических элементов в биологических системах и в морской воде не противоречат этой гипотезе. Ученые располагают и другими фактами, подтверждающими земное происхождение жизни. Однако наука развивается, накапливаются все новые факты. Способы, формы и условия возникновения жизни на Земле, по всей видимости, были бесконечно разнообразны. Переход от неживой материи к живой одновременно мог идти по нескольким параллельным направлениям. И только, возможно, какое-то одно из них привело к появлению жизни на нашей планете в такой форме, какую мы наблюдаем в настоящее время.

В проблеме зарождения жизни в соответствии с теорией А. И. Опарина выделяют химическую и биологическую эволюцию. Каждый из этих этапов является весьма сложным.

По оценкам ученых, жизнь в окружающей среде зародилась около 2,5–3 млрд. лет тому назад. Однако до сих пор, несмотря на выдающиеся достижения научно-технической мысли, человечество не может дать исчерпывающего ответа на этот вопрос. Долгое время считалось, что новые организмы могут возникать при разложении других организмов, что неживые вещества являются источником образования живых существ. Религия рассматривает появление жизни как результат нематериального начала «высшего духовного мира», «души мирового духа», «жизненной силы», «божественного разума», «творческого акта» и т.д. С религиозных позиций сама материя безжизненна и является лишь материалом для образования живых организмов. Жизнь зародилась только потому, утверждает религия, что Бог вдохнул в безжизненную плоть живую частичку божества, которая постоянно поддерживает все живое на Земле. Другая теория проповедует точку зрения, согласно которой жизнь на нашу планету занесена откуда-то извне, из мирового пространства и, таким образом, отрицает материальный и верховный характер происхождения вещества. Согласно этой теории человек – не продукт Земли, а внесенный из космоса, аллохтонный гость, полностью завладевший ныне пространством нашей планеты. Поэтому и разрушительное влияние его на окружающую среду обитания столь необозримо сильно и «враждебно», как это бывает обычно, когда иноземный вид вторгается в уже сложившиеся, веками слаженно функционирующие сбалансированные биоценозы.

Одной из распространенных является материалистическая концепция, объясняющая происхождение жизни как определенный и закономерный результат исторического развития материи. Классическое определение жизни дал Ф. Энгельс: «Жизнь – есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел… Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем явления жизни».

Получившая распространение теория возникновения жизни на Земле, разработанная советским ученым А. Н. Опариным, строится на том, что жизнь возникла в результате эволюции углеродистых соединений, химической эволюции и перехода химической энергии в биологическую. А. Н. Опарин и американский ученый Г. Юри считают, что первичная атмосфера, а с ней и жизнь, стали возможными благодаря совместному влиянию газообразного водорода, водяного пара, соединений углерода и азота. Теория А. Н. Опарина подтверждается работами ученых разных стран по абиогенному синтезу.

Среди других выделяется теория американского ученого С. Фокса, который изучает микросферы, представляющие собой шаровидные образования, возникающие при растворении и последующей конденсации полученных им абиогенно белковоподобных веществ. В процессе синтеза этих веществ из аминокислот образуются гуанин и жирные кислоты, что позволяет считать микросферы интересным объектом для изучения одного из путей появления клеток. Возможным путем возникновения фазовообособленных систем органических веществ могло быть и спонтанное образование поверхностных пленок и элементарных мембран. Такое предположение высказывает английский ученый Р. Голдейкер.

С гипотезой о происхождении жизни, послужившей основой исследований, продолжающихся и в настоящее время, тогда еще совсем молодой советский биохимик Александр Иванович Опарин выступил в 1924 г. Прошедшие три четверти века позволили уточнить и экспериментально доказать отдельные положения его теории.

Сущность ее заключается в следующем. В настоящее время в земных условиях сложные соединения углерода – органические вещества – образуются в результате жизнедеятельности организмов.

Но в далекие геологические эпохи условия на поверхности нашей планеты были другие. В атмосфере Земли не было или почти не было кислорода. Кислород в атмосфере Земли – продукт жизнедеятельности – результат фотосинтеза, осуществляемого растениями. Первозданная атмосфера состояла из метана, паров воды, водорода, аммиака, окислов азота и углерода. Через эту атмосферу легко проникала коротковолновая ультрафиолетовая часть солнечного излучения, которая сейчас задерживается в верхних слоях атмосферы озоном. Иными были условия температуры. В насыщенной парами воды нагретой атмосфере древней Земли часто сверкали мощные электрические разряды – молнии; вероятно, было значительно интенсивнее ионизирующее излучение земных пород, возможно, был интенсивнее поток космического излучения. В этих условиях мог произойти и, по-видимому, произошел абиогенный, т.е. не связанный с деятельностью организмов, синтез ряда органических соединений. Молекулы этих соединений попадали в воду первичного океана или мелких водоемов суши и образовывали, по выражению Опарина, «первичный бульон» – первичную среду, в которой затем, в течение сотен миллионов лет, шел процесс возникновения жизни.

В «первичном бульоне» происходили процессы полимеризации, укрупнения, т.е. соединения нескольких или многих одинаковых молекул. Некоторые из этих полимеров могли объединяться в комплексы, состоящие из тысяч молекул, и выделяться из раствора как обособленные системы. Некоторые из таких капель могли поглощать какие-то вещества из окружающего раствора, ассимилировать их, а другие вещества, наоборот, выделять во вне, т.е. они приобретали свойства примитивного обмена веществ. При этом коацерватные капли могли расти и даже размножаться – капли, ставшие слишком большими, делились на две или больше частей. Такие образования А. И. Опарин называет «протобионтами», т.е. предшественниками живых организмов. Постепенно у части протобионтов усложнялась внутренняя пространственная структура, молекулярное строение исходных полинуклеотидов и белковоподобных полипептидов становилась более упорядоченным, обмен веществ – более сложным. Протобионты путем длительной эволюции и естественного отбора стали способны повторять, воспроизводить свою структуру и вступили на путь биологического развития.

Так, по мнению А. И. Опарина, предбиологические системы приобрели на довольно поздней стадии эволюции механизм точного самовоспроизведения, который характеризует весь современный мир живых существ.

Другие исследователи иначе представляют себе процесс возникновения жизни. Д. Бернал считаем, что образование первых органических веществ могло происходить не в водной среде, не в гидросфере Земли, а в результате конденсации газов на поверхности твердых частиц (железа и силикатной пыли), в том числе и в космосе. Энергию для этих процессов давали солнечные вспышки и космическое излучение. Он считает, что упорядоченные молекулы белков и нуклеиновых кислот могли образоваться на добиологическом этапе эволюции, в процессе, аналогичном процессу кристаллизации.

Однако все исследователи сходятся в основном положении: жизнь, живые организмы произошли из неживой природы, причем биологической эволюции предшествовал длительный период химической эволюции – период образования и усложнения молекул органических соединений. Это был естественный процесс, связанный с притоком энергии, который проходил в специфических условиях, отсутствующих сейчас на Земле. Многие из предполагаемых условий абиогенного образования органических молекул можно воспроизвести в лаборатории.

Первые эксперименты в этой области были поставлены только в 1952 г. Стенли Миллером. Он сконструировал аппарат, состоящий, по сути дела, из двух колб и холодильника. В нижнюю колбу Миллер налил воду, затем выкачал из всего аппарата воздух, который был заменен газовой смесью, состоящей из водорода, метана и аммиака. После чего Миллер начал подогревать воду в нижней колбе, водяные пары поднимались в верхнюю колбу, из нее поступали в холодильник, где конденсировались, а образовавшаяся вода вновь стекала в нижнюю колбу. Таким образом, был смонтирован процесс круговорота воды в природе. Когда в аппарате начался процесс циркуляции содержимого Миллер подал на электроды, предварительно вмонтированные внутри аппарата, напряжение и между ними стали возникать электрические разряды, подобные молнии. Спустя несколько дней вода, находящаяся в нижней колбе, стала заметно желтеть. Через две недели раствор стал совершенно коричневым. Разобрав аппарат и испарив воду Миллер получил сиропообразный остаток коричневого цвета. Путем химического анализа в остатке были обнаружены аминокислоты, органические кислоты, среди которых встречались и типичные для живых организмов вещества. Спустя десять лет уже не менее двадцати лабораторий мира изучали возможности абиотического образования органических веществ.

Дальнейшие эксперименты С. Миллера, М. Кальвина, А. Г. Пасынского, С. Фокса и других исследователей показали, что эти важные биоорганические молекулы могут образовываться из простейших химических соединений под воздействием высоких температур, ионизирующих излучений, ультрафиолетовых лучей и электрических разрядов. Так, при действии искровых разрядов на смесь, состоящую из метана, аммиака, водорода и паров воды, образуются различные аминокислоты. При температурных воздействиях на смеси аминокислот удается осуществить их полимеризацию и получить белковоподобные соединения с определенной последовательностью аминокислотных остатков. В модельных опытах осуществлен синтез и нуклеотидных компонентов.

Именно в подобных условиях взаимодействия воздуха, воды, камня и родилось когда-то живое вещество. В настоящее время его развитие изучено сравнительно хорошо. Условно выделяют три этапа: добиогенный – «колыбель», биогенный – «детство и юность», антропогенный – «зрелость».

Первый – добиогенный – этап был самым долгим. Свыше 3 млрд. лет. В поверхностной части земной коры в этот период могли уже существовать различные микроорганизмы. Пусть в атмосфере еще было мало кислорода. Пусть углекислый газ составлял основное в добиогенной атмосфере. Невидимое глазу живое существо могло приспособиться и к этим совсем не похожим на современные условиям.

В те отдаленные геологические эпохи природа начала заботиться о благосостоянии современных обитателей Земли. Накапливались огромные запасы будущих железных руд – джеспилитов. Видимо, тогда существовали особые условия для рудообразования, не сравнимые с условиями в другие геологические периоды. В ту пору и морские воды были не такими солеными. Их засолению способствовала зарождающаяся жизнь.

С образованием первичных примитивных организмов – пробионтов – закончилась химическая эволюция материи и история возникновения жизни. После этого начался биологический этап развития, началась эволюция живых существ от наиболее примитивных до современных высокоорганизованных растений и животных.

Интенсивное развитие живых организмов ввело в действие механизм фотосинтеза. И сам ход истории постепенно приводил нашу планету ко второму – биогенному – этапу ее развития. Он гораздо короче первого. Длился около 600 млн. лет. Однако его воздействие огромно. На смену простейшим существам стали приходить разнообразные виды животных и растительности. В это время на Земле неоднократно на месте морей поднимались горы, а суша превращалась в подводное царство. Геологи даже отмечают особые бурные периоды изменения лика планеты. Создавались горные цепи, долины и водоемы, расчленяя земную поверхность на самостоятельные участки. Это давало толчок к более быстрому развитию органического мира. Он обновлялся, становился многообразнее. Ведь, чтобы выжить, требовалось приспособиться к новым природным условиям.

Правильность такого мнения подтверждает и современность. На огромных просторах Русской равнины насчитывают тысячи видов растений, а на небольшом по площади Кавказе их поселилось почти в 2 раза больше. Притом половина этих видов встречается только здесь. Очень долго, то спокойно, то бурно создавалась новая оболочка планеты. А вот ее название появилось чуть больше века назад, когда стали говорить о биосфере. Эта сложная система включает в себя и части косных оболочек (атмосферы, гидросферы, и литосферы), где происходят биологические процессы.

Их первоначало уходит в глубь бесконечного времени. По подсчетам академика А. П. Виноградова, это было почти 2 млрд. лет назад. Впрочем, время возникновения биосферы можно определить лишь приблизительно в результате изучения останков вымерших древнейших организмов и растений. Потребовалось найти ей и свое место среди косных оболочек, условно выделив ландшафтную сферу. Она как бы вмещает все живое на Земле. Сравнить такую сферу можно с гигантским парником. Есть у него верхний и нижний защитные экраны. Первый расположен на высоте около 15 км. Здесь затухает разрушительное воздействие космических излучений. Нижний экран спрятан в недрах, его граница там, где в темных глубинах исчезают любые проявления жизни.

Лучи жаркого Солнца приносят планете необходимое тепло и энергию. Они поддерживают жизнь земного «парника». Внутри него господствует биосфера, преобразуя в свою очередь все окружающее. Однако живое в отдельности не долговечно. Академик В. И. Вернадский предположил, что отмершая часть биосферы, обогащенная энергией живого вещества, постепенно опускается в глубокие недра. Там под действием высоких температур и давления отдает накопленную энергию, активно участвует во многих подземных процессах. Поэтому в глубинах нашей планеты действуют не только собственные внутренние процессы. Все гораздо сложнее, взаимосвязаннее.

Перед проявлением человека на Земле природа несколько раз переделывала живой мир. Кого-то, вроде гигантских динозавров, удаляла навсегда, кого-то совершенствовала, приспосабливая к изменяющимся условиям окружающей среды. Ученые подсчитали: если всю биомассу планеты с момента ее зарождения равномерно распределить по поверхности, то Земля покрылась бы слоем толщиной 80 км. На первый взгляд, почти невероятные цифры. Однако научно обоснованы. Почему же в самом деле такого не происходит?

В природе действуют регулирующие силы. Они не допускают одностороннего развития и обеспечивают естественное равновесие. Совсем не случайно из многих миллиардов тонн отмирающего живого вещества лишь около 1/100 превращается в горные породы, а остальное в летучие газы. Будь иначе, планета распухла бы, словно на дрожжах. И вот представьте ко всему этому недавно (недавно с точки зрения геологов – несколько сотен тысяч лет назад) присоединился будущий человек – архантроп, который начал свою жизнь в трудных условиях межледниковых периодов.

Проблема развития человека на всех этапах от обезьяны до Homo sapiens к настоящему времени во всех деталях не решена еще до конца. Однако в общем плане она уже ясна ученым. Исследователями составлено несколько схем развития предков человека и приматов.

Биохимик Д. Коне на основе молекулярно-биологических исследований построил в 1970 г. генеалогическое дерево приматов и человека. Их предком является мелкое крысоподобное существо – плезиадапис, кормившее своих детенышей молоком и жившее примерно 60 млн. лет назад. От общей ветви приматов и человека примерно 40 млн. лет назад отделились полуобезьяны: лемуры, лори и долгопяты. Затем от общей ветви примерно 30 млн. лет назад произошло отделение обезьян Нового и Старого Света.



biofile.ru

Возникновение первых организмов на Земле и их дальнейшая эволюция

Наиболее разработанная теория происхождения жизни на нашей планете принадлежит советскому ученому А. И. Опарину. Основные положения этой теории таковы. Земля после ее возникновения длительное время находилась в таком раскаленном состоянии, что никаких химических соединений на ней не могло быть. Первые соединения, которые появились после охлаждения земного шара, были углеводороды и аммиак. В результате химических превращений производных этих веществ и взаимодействия их между собой в водной среде образовались углеводы, аминокислоты, жироподобные вещества и другие сложные органические соединения. Дальнейшие взаимодействия между упомянутыми соединениями привели к возникновению и объединению больших молекул в каплевидные образования, отделенные от окружающего их водного раствора, из которого они могли поглощать разные вещества. В одних случаях поглощение каплями различных веществ могло приводить к распаду этих капель, в других — к их увеличению. Оставались такие капли, в которых устанавливалось определенное соотношение между процессами синтеза и распада составляющих их веществ, на ход которых влияли различные катализаторы. Впоследствии появились наиболее совершенные каталитические вещества белковой природы — ферменты, способствующие ускорению химических процессов и усилению их специфичности.

Такие системы, которые были прообразами очень простых живых существ, имели больше шансов сохраниться, чем те системы, в которых процессы шли медленнее и взаимодействие их с веществами водного раствора было менее активным. Таким образом, с известным правом можно утверждать, что в возникновении первых организмов сыграли роль процессы, напоминающие те, которые совершаются при естественном отборе.Первые организмы были гетеротрофами и в основном питались органическими веществами, возникшими без участия организмов. Размах их синтетических процессов был еще незначителен; создавать из неорганических соединений органические вещества они не могли ввиду отсутствия у них необходимых для этого аппаратов. В атмосфере, окружавшей рассматриваемые организмы, свободного кислорода не было, так как он был поглощен при остывании Земли в процессе различных реакций. Следовательно, у первых организмов диссимиляция происходила по типу брожения с освобождением сравнительно небольшого количества энергии. Это ограничивало их активность и уменьшало возможности синтеза органических веществ, образующихся с поглощением энергии. Строение их было простое, специальных частей, выполняющих определенные функции, еще, вероятно, не было.В процессе эволюции, которая шла очень медленно, естественный отбор благоприятствовал тем организмам, у которых размах органического синтеза постепенно возрастал, и они могли использовать для ассимиляции менее сложные органические вещества. Очевидно, усложнялось и их строение. Поворотный этап в описываемой эволюции наступил тогда, когда у некоторых организмов появились пигменты, способные поглощать световую энергию. Эту энергию можно было использовать для превращения неорганических соединений в органические, т.е. возникали примитивные процессы фотосинтеза. Таким образом появились первые автотрофы, дальнейшие прогрессивные изменения которых обусловили появление в атмосфере свободного кислорода и переход ряда организмов к процессам дыхания. Эволюция постепенно убыстрялась, и строение организмов, среди которых были и автотрофы, и гетеротрофы, усложнялось: появились некоторые органоиды (части клеток), выполнявшие определенные функции в процессах обмена веществ, развивался аппарат (в виде хроматиновых тел), обеспечивающий более точную передачу наследственных свойств, но сформированного ядра с хромосомами еще не было. Сложное деление клетки (митоз) и типичный половой процесс еще не могли совершаться. Появившиеся органоиды имели примитивное строение, а некоторые органоиды, которые развились впоследствии у более сложных организмов, отсутствовали. Для этих живых существ было предложено название доядерные организмы, или прокариоты (Procaryota). От них в результате прогрессивных изменений в течение длительного промежутка времени возникли настоящие ядерные организмы, или эукариоты (Eucaryota). У последних дифференцировалось настоящее ядро с хромосомами, подвергающееся сложному делению (митозу), возник типичный половой процесс, усложнились имевшиеся и появились новые органоиды и т. д. К потомкам доядерных организмов, конечно, сильно изменившимся, относятся современные дробянки. Растения, грибы и животные — ядерные организмы, тоже изменившиеся по сравнению с древними представителями эукариот.В клетках всех ядерных организмов, кроме сформированного ядра с хромосомами, имеются органоиды: лизосомы (в которых разлагаются органические вещества), рибосомы (в которых синтезируются белки), эндоплазматическая сеть (на стенках каналов которой синтезируются углеводы и жиры, а сами каналы служат для переноса веществ), митохондрии (в которых происходят накопление веществ, богатых энергией, и выделение ее в процессе диссимиляции), аппарат Гольджи (служащий для выделения некоторых веществ наружу и для других функций). У до-ядерных автотрофных организмов, имеющих хлорофилл, последний распылен в клетке, у ядерных организмов он сосредоточен в особых органоидах — пластидах, или хроматофорах. Оболочки клетки и ядра имеют сложное строение и состоят из трех слоев. В процессах митоза важнейшую роль играет расположенный около ядра клеточный центр (с центриолями и центросферой). Следует отметить, что у более прогрессивных представителей прокариот имеются митохондрии, но более простые, чем у ядерных организмов, есть зачатки эндоплазматической сети и другие особенности, приближающие их к эукариотам.Большое сходство в строении клеток всех ядерных организмов можно объяснить только тем, что они произошли от общего предка, который уже имел все главные особенности ядерных организмов.Кто же был этим предком: автотрофный организм, т. е. растение, или гетеротрофный организм, т. е. животное? Мнения ученых расходятся. Одни полагают, что первыми ядерными организмами были растения, от которых произошли грибы и животные. Согласно этой гипотезе животные возникли из растительных организмов, перешедших к активному захвату других организмов или их остатков. Грибы же возникли из растений в результате перехода их предков к питанию разлагающимися органическими веществами, но сохранили способность к некоторым процессам автотрофной ассимиляции. Происхождение животных от растений, по мнению сторонников этой гипотезы, подкрепляется существованием в классе жгутиковых типа простейших многих организмов, сочетающих оба способа ассимиляции — автотрофный и гетеротрофный.Другие считают, что первыми ядерными организмами были животные, произошедшие от доядерных гетеротрофов и давших потом начало грибам и растениям. Ряд сторонников этой гипотезы высказали мнение, что какие-то животные заглатывали доядерных автотрофов, у которых хлорофилл был распылен в цитоплазме. Первоначально захваченные древними животными доядерные автотрофы переваривались, но впоследствии некоторые из них благодаря каким-то биохимическим изменениям перестали разлагаться под действием пищеварительных ферментов и превратились в пластиды возникших таким путем растений. Что же касается грибов, то, по мнению этих ученых, они непосредственно возникли из первичных ядерных гетеротрофов, т. е. животных. Необходимо отметить, что сторонники обеих гипотез признают непосредственное родство растительного и животного царств. Это означает, что вначале различия между растениями и животными были невелики, а в ходе дальнейшей эволюции все больше возрастали. В чем же причина расхождения обоих царств и каковы отличия типичных животных от типичных растений?

Related news items:

Newer news items:

Older news items:

geo-history.ru

9. Как развивалась жизнь на Земле

1. Как давно появилась жизнь на Земле? На суше или в воде впервые появились живые существа? Предположите почему.Эволюция жизни на Земле началась с момента появления первого живого существа — около 3,7 миллиарда лет назад — и продолжается по сей день. В воде.

2. Какие живые существа обитали в древнем океане?

1)трилобиты-родственники раков.2)динихтис - хищная рыба.3)стегоцефалы- древние земноводные.

3. Используя рисунок на с. 53 учебника, расскажите, какие растения и животные населяли леса каменноугольного периода.

Стегоцефал трилобитов динихтис ихтиозавр плезиозавры папоротники хвощи и плауны.

4. Рассмотрите животных, изображенных на рисунке, и назовите их. Обитают ли они на Земле в настоящее время?

Они уже все вымерли до того как мы появились.

5. Каково происхождение добываемого в настоящее время полезного ископаемого – каменного угля? Как люди его используют?

Уголь это древний, окаменелый папоротник. Его используют как горючее ископаемое- топливо, огниво.

6. Кто такие динозавры? Выясните, кто из современных животных имеет ближайшее к ним родство.

Динозавры -  это отряд наземных позвоночных животных, доминировавших на Земле в мезозойскую эру - в течение 160 млн. лет, начиная с позднего триасового периода до конца мелового периода, когда большинство из них стали вымирать на стыке мелового третичного периода во время крупно масштабного исчезновения животных и многих разновидностей растений.. Ближайшие кто к ним относится это: рыбы, ящерицы, вараны, крокодилы, змеи, птицы, насекомые.

7. Когда на Земле появились разнообразные цветковые растения, птицы и млекопитающие?

В начале мелового периода появились  цветковые растения. Первые птицы появились в мезозойскую эру. Одни из первых млекопитающих был дидельфодон-сумчатый зверь, который появился примерно 71млн.лнт назад.

8. Составьте план предполагаемой экскурсии на тему «Древние обитатели нашей планеты».

1. Расскажи про динозавров.2. О жизни динозавров (кратко).3. Расскажи о эволюции.4. Расскажи про древних людей.5. О жизни древних людей, о их ремесле.

Всё. Так как дальше идут средние века. 

9. Подготовьте сообщение об одной из групп древних животных, обитавших на Земле миллионы лет назад.

Брахиозавр относится к отряду ящеротазовых динозавров. Они обитали на Земле примерно 150 миллионов лет назад. Части скелетов брахиозавра найдены были в Северной Америке и Восточной Африки. Первый скелет был обнаружен в 1900 году в штате Колорадо, в США.

10*. С помощью вертикальных отрезков изобразите в рабочей тетради относительные размеры различных динозавров и человека.

biogdz.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта