Как сделать co2 для растений. Подкормка CO2, растворенным в воде, через корневую систему

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Фото отчеты и эксперименты. Выращивание. Как сделать co2 для растений


генератор CO2 на соде - Оборудование и девайсы

Писать пользователю Shaman

14 posts in this topic

kidercop    260

мотузочка    2,321

djafarchik    12,195

  • Волшебник Изумрудного Города
  • Администраторы
  • 12,195
  • 37,631 posts
  • Ваш стаж грова:Более 5 лет
  • Ваш возраст:Я подтверждаю, что мне уже исполнилось 18+ лет.
  • ₲ 22,484 GanjaCoins

мотузочка    2,321

мотузочка    2,321

kidercop    260

belomorik    451

  • Растаман
  • Члены клуба
  • 451
  • 996 posts
  • Ваш стаж грова:Более 5 лет
  • Ваш возраст:Я подтверждаю, что мне уже исполнилось 18+ лет.

Narayan81    0

  • Пользователь
  • Члены клуба
  • 0
  • 11 posts

Rastamann    904

glot    1,408

  • олдовый
  • ОldFriend
  • 1,408
  • 4,039 posts
  • Ваш возраст:Я подтверждаю, что мне уже исполнилось 18+ лет.
  • ₲ 178 GanjaCoins

Serg1974    3

  • Пользователь
  • Члены клуба
  • 3
  • 25 posts

dima271376    89

  • Планокур
  • Члены клуба
  • 89
  • 412 posts

sportman13    0

  • Новичок
  • Члены клуба
  • 0
  • 1 post

djafarchik    12,195

  • Волшебник Изумрудного Города
  • Администраторы
  • 12,195
  • 37,631 posts
  • Ваш стаж грова:Более 5 лет
  • Ваш возраст:Я подтверждаю, что мне уже исполнилось 18+ лет.
  • ₲ 22,484 GanjaCoins

Create an account or sign in to comment

You need to be a member in order to leave a comment

Sign in

Already have an account? Sign in here.

Sign In Now Писать пользователю Shaman

ganjalive.center

Подкормка CO2, растворенным в воде, через корневую систему - Top dressing of greenhouse plants with carbon dioxide (CO2)

By Робот

Энергоцентр — одна из основных составляющих тепличного комбината (или производств в защищенном грунте). Он обеспечивает теплом и электричеством весь комплекс и помогает поддерживать нужный микроклимат в теплицах. Особые условия, необходимые для эффективной работы тепличных хозяйств, растущая стоимость энергоресурсов, стремление повысить эффективность производства и сократить затраты — все эти факторы влияют на выбор отопительного оборудования для энергоцентра. Для начала рассмотрим ключевые особенности работы энергоцентра современного тепличного хозяйства. Он несёт две ключевые функции. Первая — поддержание необходимых параметров микроклимата в теплицах; вторая — подкормка растений CO2 из отработанных газов в светлое время суток. Подкормка крайне важна, так как помогает повысить урожайность культур до 40%. Котельные газы при этом должны содержать минимальные объемы вредных веществ, в основном оксидов азота, которые оказывают губительное влияние на растения. Кроме этого, расходы на генерацию тепла достигают 40-50% в структуре затрат тепличного хозяйства, поэтому важно, чтобы оборудование обладало высоким КПД и было энергоэффективным. Современная технология, уже применяемая в тепличных комплексах, основана на использовании баков-аккумуляторов очень большого объема (несколько тысяч кубических метров воды). Это позволяет при отсутствии или малой потребности в тепловой мощности для обогрева теплиц генерировать требуемое количество СО2для подкормки растений, а избыточное тепло накапливать для последующего использования, в том числе и в период, когда углекислый газ не требуется, например, в ночное время. Такая схема позволяет отказаться от котлов с большим водяным объемом, традиционно использующихся в тепличных хозяйствах. Котлы со стандартным водяным объемом обладают рядом преимуществ: Они более компактны, занимают меньше площади энергоцентра, не так требовательны к фундаментам ввиду меньшего веса, что позволяет сократить капитальные затраты. В отличие от котлов с большим водяным объемом, они не требуют использования дополнительного рециркуляционного насоса. Это позволяет сократить расход электроэнергии, которая вырабатывается энергоцентром, а также снизить затраты на обслуживание и замену оборудования. Меньший объем стандартных котлов обеспечивает их быстрый прогрев, что значительно сокращает образование конденсата. Конденсат, образующийся внутри котла при его прогреве, — это довольно сильная углекислота с рН≈3-5 и температурой около 60°С. Образование в котле такой кислоты ведет к преждевременному выходу из строя из-за так называемой низкотемпературной коррозии. Чем быстрее котел прогревается и проходит точку росы, тем меньше вероятность поломки по указанной причине. Допустимое рабочее давление котла со стандартным водяным объемом выше и составляет 6 бар. Толщина металла котла в этом случае больше, а сам котел надежнее и долговечнее. Это не приводит к существенному увеличению массы и стоимости, так как размеры меньше. Используемые в составе котлоагрегатов Bosch современные горелочные устройства с внутренней рециркуляцией дымовых газов генерируют экстремально низкие количества NOx (< 60 мгр/м3для газовых горелок и <70 мгр/м3для двухтопливных горелок) во всем диапазоне регулирования котла. Для сравнения, традиционные для тепличных хозяйств котлы генерируют допустимые значения NOx (72-75 мгр/м3) только в диапазоне от 30% до 50%. Большой диапазон регулирования котлов Bosch позволяет более точно генерировать и дозировать количество СО2, что исключает перерасход топлива и ведет к экономии средств. Современная система автоматизации котлов Bosch, построенная на контроллерах Siemens, обеспечивает управление пуском котлов, точную регулировку в соответствии с потребностью в СО2 и тепловой энергии, защиту котлов от ненормативных (аварийных) режимов работы, передачу всей необходимой информации в систему АСУ ТП (SCADA) тепличного комплекса. Кроме того, система автоматизации полностью совместима и работает под управлением контроллеров, отвечающих за микроклимат теплиц, например, контроллеров голландской фирмы PRIVA. Горелки и циркуляционные насосы комплектуются частотными преобразователями, что позволяет еще больше экономить электроэнергию. Перечисленными преимуществами традиционно обладают высококачественные импортные котлы, однако колебания курсов валют привели к удорожанию импортного оборудования и спровоцировали на российском рынке дефицит эффективных решений для теплиц, которые были бы доступны по приемлемой цене. Решением этой проблемы отчасти стала локализация производств котлов. Так, например, Bosch в 2014 году запустил производство в г. Энгельсе Саратовской области. На заводе Bosch используются передовое немецкое оборудование и технологии, контроль качества осуществляется по немецким стандартам, а работники проходят регулярное обучение и повышение квалификации в Германии. За счёт локализации производства компании удалось добиться конкурентоспособных цен при полном сохранении немецкого качества продукции. Также благодаря размещению производства в России продукция завода соответствует требованиям государственных программ субсидирования импортозамещения. Сочетание этих факторов является решающим при выборе котельного оборудования для инновационных промышленных теплиц. Одним из примеров может служить энергоцентр крупного тепличного комплекса, который будет запущен в октябре 2017 года агрохолдингом «Выборжец», производителем овощей и зелени, расположенным в Ленинградской области. «Выборжец» известен своим инновационным подходом к развитию производства. Так, в 90-е годы холдинг первым в регионе стал поставлять продукцию с корневой системой, в 2000 году освоил технологию досвечивания растений, а в 2010 — технологию интерплантинга, или выращивания старых и молодых растений в одной теплице. В новом энергоцентре агрохолдинга будут установлены пять водогрейных газовых котлов Bosch Unimat UT-L мощностью 16,4 МВт каждый. Три из них будут работать на тепличное хозяйство, два — обеспечивать теплом рабочий посёлок и служить источником резервной мощности. Современные горелки помогают обеспечить экстремально низкое содержание оксидов азота в отработанных газах. Система управления котлами интегрирована с АСУ тепличного хозяйства и системой управления микроклиматом теплиц, позволяя вывести удобство и эффективность управления на качественно новый уровень. Важное преимущество котлов Unimat UT-L — это высокий КПД, который достигает 95%. Котлы поставляются в комплекте с экономайзерами (конденсорами) из нержавеющей или оцинкованной стали, которые позволяют Unimat UT-L работать в конденсатном режиме с КПД до 105%. Так же в комплект поставки входит вся необходимая запорно-регулирующая арматура. Завод-производитель регулярно расширяет мощностной ряд котлов, что позволяет подобрать оборудование точно под потребности проекта, не создавая невостребованных излишков мощности и неоправданных капитальных затрат. Референс-лист промышленных котлов Bosch в России насчитывает десятки проектов, в том числе и в сельском хозяйстве. В настоящий момент на разных стадиях проработки находятся ещё несколько проектов энергоцентров с котлами Bosch для тепличных хозяйств. Таким образом, использование комплексных решений Bosch в тепличных хозяйствах России уже становится распространённой практикой. Источник: OOO «Бош Термотехника» Ссылка на источник

greentalk.ru

Все об СО2 для аквариума

Рано или поздно любой аквариумист сталкивается с вопросом о подаче СО2 в свой аквариум. В интернете можно найти много статей, форумов на эту тему, однако все они посвящены одному из вопросов касающихся СО2. Поэтому в данной статье мы решили собрать все воедино, доступно изложить материал, сделав при этом упор на те методы и способы подачи СО2 в аквариум, которые не требуют особых денежных вливаний и для которых необходимы лишь ваши умелые руки.

 

  Что такое СО2, зачем нужен СО2 для аквариума?

СО2 – это газ, который необходим аквариумным растениям. Растения на 50% состоят из углерода. В естественных условиях концентрация СО2 в воде составляет от 15-40 мг/л. А вот в аквариуме этот показатель стремиться к нулю, даже несмотря на то, что рыбки и другие обитатели аквариума вырабатывают его в процессе жизнедеятельности, однако в очень незначительных количествах. Сам механизм потребления СО2 растениями заключается в процессе фотосинтеза. Фотосинтез - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Проще говоря, в растениях происходит процесс преобразования воды (Н2О) и углекислого газа (СО2) под действием солнечного света, в богатое энергией органическое соединение – глюкозу (С6Н12О6). Формулу фотосинтеза можно представить следующим образом:

 

6СO2 + 6h3O = С6Н12O6 (глюкоза) + 6O2

В темноте происходит обратный процесс:

С6Н12O6 + 6O2 = 6CO2 + 6h3O

 

Из вышесказанного можно сделать выводы, что СО2: - Это основной строительный материал организма растений! Растения в аквариуме, при грамотной подаче СО2 становятся: красивыми и здоровыми, быстрорастущими. - В процессе фотосинтеза растения выделяют кислород О2! Этот процесс в народе называют пузырянием или перлингом растений. В свою очередь, выделяемый растениями кислород потребляется рыбками и другими гидробионтами, что нивелирует необходимость в механической аэрации аквариума в световой день. - кроме того, при подаче СО2 в аквариуме понижается уровень pH. Что нравиться фактически всем растениям и некоторым мягководным рыбкам.

 

Предостережения и опасности СО2 в аквариуме.

Если вы решили приобрести систему СО2 для аквариума, то должны понимать, что после ее установки придется более тщательнее следить за аквариумом: нужно будет контролировать уровень СО2 при помощи тестов или дропчекера, контролировать уровень pH, регулировать освещение, осуществлять грамотную подкормку растений макро и микро-удобрениями и т.д. Если этого не делать, то возникнут проблемы из-за неслаженной работы фотосинтеза: возможно удушение рыб, помутнение воды, водорослевая вспышка и прочие неприятности. Учтите, что даже самая безобидная самодельная система СО2 по типу бражка может навредить аквариуму. Поэтому все тщательно взвесьте и с умом подойти к вопросу установки СО2 для своего аквариума.

 

Выращивание аквариумные растения - это комплексное мероприятие.

Формула их успешного содержания заключается в балансе:

+

+

+

При этом, выпадение хотя бы одного элемента приведенной формулы, влечет за собой плохое состояние растений. А также различные негативные последствия для аквариума в целом.

В отношении каждого элемента формулы даны ссылки, ниже кратко:

ОСВЕЩЕНИЕ. Какая бы ни была концентрация СО2 в аквариуме, без освещения углекислый газ в процесс фотосинтеза вступать не будет. Только баланс освещения и СО2 благоприятно влияют на растения.

УДОБРЕНИЯ. Растениям жизненно необходимы макро и микроэлементы. Макро-удобрения (NPK) - нитрат (NO3), фосфат (P/PO4), калий (K). Микро-удобрения - Fe, K, Mg, Mn, Cu, Zn, Mo, B, Co и др. ПАРАМЕТРЫ ВОДЫ. Большинство растений любят мягкую, слабокислую воду. Если говорить точнее, то в такой воде происходит наилучшее усвоение удобрений растениями. Для начинающих аквариумистов, вот еще базовый материал по растениям: АКВАРИУМНЫЕ РАСТЕНИЯ ДЛЯ НАЧИНАЮЩИХ. На этом считаем необходимым завершить изложение основ. Думаем, что вы сложили свое впечатление о необходимости СО2 в аквариуме.

Способы подачи СО2 в аквариум. 

Существуют три способа подачи углекислого газ в аквариум:

- система брожения;

- баллоны со сжиженным газом;

- углеродосодержащие препараты.

Статья по этому поводу находиться - здесь.  Кратко,  баллонный способ – это самый оптимальный вариант. Изначально баллонная система СО2 дороговато обходится. Но зато потом окупает себя с лихвой, т.к. служат они долго, а перезаправка баллонов стоит копейки. Сахар, дрожжи, сода и т.д. стоят в разы дороже =)

баллонная система со2

Углеродосодержащие препараты. К таким препаратам можно отнести, например, Tetra CO2 Plus - насыщает воду углеродом в форме, которая легко усваивается растениями.

 

СИСТЕМА БРОЖЕНИЯ. Вот мы и добрались до ее. 

На наш взгляд – это самый интересный способ подачи углекислого газа для начинающего аквариумиста. Бражку можно сделать самому и посмотреть как она будет работать, вырастить на ней свой первый травник. А уж потом принимать решение о баллонах и акваскейпе =). У данного способа, есть два недостатка: - подходит для небольших аквариумов до 100 литров; - в бражке не возможно регулировать подачу газа и перекрыть ее на ночью; Однако, на захват объема аквариума в 200 литров можно поставить две бражки. А относительно второго пункта, можно вынимать на ночь распылитель СО2 и шланг из аквариума. Стоит отметить, что такой системой подачи СО2 сложно перенасытит аквариум углекислым газом. Она слабенькая. Кроме того, вы же всегда наблюдаете за аквариумом и в случае, чего-то сможете остановить процесс. Существует великое множество бражных агрегатов СО2, все они блещут новаторством и простотой. Еще больше существует рецептов, ингредиентов для системы брожения. Например, СО2 установка на лимонной кислоте. В данном материале, предлагаем вам пошаговую инструкцию бражной системы СО2 для аквариума, которую можно сделать своими руками. Такая установка не потребует от вас особых знаний и усилий, каких-то специфических деталей и обойдется в копейки. Отчасти именно поэтому, мы рекомендуем ее новичкам.ИТАК, ВОТ СПИСОК ТОГО, ЧТО ПОНАДОБИТЬСЯ.Двухлитровая пластиковая бутылка из под минеральной воды. Используется в качестве основной тары для бражки. Лучше использовать прозрачную бутылку, так вы будете видеть процесс и в случае чего вовремя отреагировать. Литровая бутылочка из под сока с широким горлышком. Используется в качестве своеобразного фильтра, чтобы сопутствующая бражная бяка не попала в аквариум. Такой префильтр обязателен! Иначе погубите рыбу.Бутылочка спортивной воды, а вернее крышечка от нее. Понадобится в качестве закупорки бражки и создания счетчика пузырьков газа. Не обязательно, можно и без счетчика сделать.Шприц пятикубовый. Используется в качестве пузырькового счетчика. Капельница. Продается в любой аптеке. Нужна в качестве шлангов для системы СО2.Силикон аквариумный или строительный. Нужен для герметизации агрегата.Клапан обратного давления 1 шт., можно 2шт. Продается в любом отделе аквариумистики, предназначен для закупорки бражки, а также для того, чтобы вода из аквариума не полилась в систему или на пол.Распылитель. Камешковый,  «колокол СО2» и прочие распылители. Трубка или шланг аквариумный.

Он чуть толще шлангов капельницы, может понадобиться.

Присоски. Чтобы прикрепить шлаг подачи СО2 в аквариуме. Итого, стоимость бражной системы СО2 выйдет примерно в 7-8 $.

ПОШАГОВАЯ СБОРКА СИСТЕМЫ СО2 ДЛЯ АКВАРИУМА.

Примечание: можно обойтись и без счетчика пузырьков. И подсоединить трубку капельницы напрямую в крышку 2х литровой бутылки, стык сильно засиликонить.Берем капельницу. Отсоединяем переходничок. Сразу же можно снять с капельницы регулятор подачи. Он не понадобится. Так как, если вы перекроете его бражка лопнет. Отсоединенный перходничок оставляем. Делаем под него дырочку в крышечке из под «Биолы». Вставляем переходничок в крышку. ПЕРЕХОДИМ К РЕЦЕПТАМ БРАГИ ДЛЯ АКВАРИУМА

Реакция и СО2 пойдут примерно через 8-12 часов. Если до 24 часов газ не пойдет, значит что-то не так – либо травит система, либо реагентов мало, либо температура ниже 20-22 градусов. Проверьте герметичность установки, добавьте сахара и дрожжей, поставите бражку в теплое место (на батарею центрального отопления).

Теперь перед тем, как дать другие рецепты, кратко обсудим все ингредиенты для браги. Чтобы брага заработала нужен сахар, дрожжи и вода. Все остальное, это новаторство и доп.компоненты. САХАР. Можно использовать любой, но поговаривают, что тростниковый самый лучший. Чем больше будет сахара, тем больше будет чего есть дрожжевым грибкам. Тем сильнее будет проходить реакция.  ДРОЖЖИ. Бывают хлебные (сухие и «мокрые»), можно использовать и те, и те! Разницы почти никакой. Рекомендуем сухие. Бывают также пивные и кормовые дрожжи. Для систем со2 рекомендуют пивные. ВОДА. Нужна чистая, чтобы дрожжевые грибки не боролись с другими конкурирующими культурами, хлоркой и другими примесями.Остальные элементы: Сода нужна для нейтрализации кислот. Делает бражку более щелочной, что продлевает ей жизнеспособность. Соду можно не использовать – это дополнительный элемент. Корм для рыбок и удобрения для растений. Участвуют в процессе брожения, стимулируя его и подкармливая дрожжевые грибки. Кусочки хлеба – так же улучшает процесс брожения. Их количество индивидуально. Можно также кидают в бражку изюм, урюк, кусочки фруктов и так далее.

ПОСЛЕ ТОГО, КАК БРАЖКА ОТРАБОТАЛА, РЕКОМЕНДУЕТСЯ СЛИТЬ 2/3. ОСТАВШУЮСЯ ЧАСТЬ ДОЗАПРАВИТЬ НОВЫМИ ИНГРЕДИЕНТАМИ И СВЕЖЕЙ ВОДОЙ. ПЕРИОДИЧЕСКИ МОЖНО ПОЛНОСТЬЮ СЛИВАТЬ ВСЮ БРАЖКУ И ДЕЛАТЬ ВСЕ ПО НОВОЙ.

   Другие рецепты СО2 для бражки.

Сахар - 40 столовых ложек; Крахмал - 16 столовых ложек; Сода - 13 столовых ложек; Воды – 2 литра; Все ингредиенты варятся в кастрюле до загустевшего состояния. После остужают и переливают в пяти литровую тару, добавляют 1 столовую ложку растворенных дрожжей на стакан воды. Работоспособность 3 месяца.

Сахар -150 грамм; 1 чайная ложка дрожжей; 2 чайные ложки соды; 2 столовые ложки муки; 1,5 литра воды; 2 л. бутыль; Работоспособность 1-1,5 недели.   

10 гр. лимонной кислоты; 10 гр. питьевой соды; Ингредиенты смешиваются в сухом состоянии, пересыпаются во влажную (без воды) браготару. Тару герметизируют. Работает 6-10 часов (на весь световой день).  

На двухлитровую бутыль: Сахар 3 стакана; 30 грамм желатина; 1-н л. воды; 1 ст.л. питьевой соды; 1 ч.ложка дрожжей; Желатин замачивают на один час в 0,5л. воды. После добавляют еще 0,5 литра воды, добавляют сахар, соду. Подогревают на медленном огне до полного растворения. После остывания «желе» переливают в браготару, поверх (не размешивая) добавляют растворенные дрожжи. Работоспособность 2-4 недели.  

5 ст. ложек сахара; 2 ст. ложки крахмала; 1 ст. ложка соды; ? литра воды; 1 ч.ложка дрожжей; Растворить в воде сахар, соду и крахмал. Поставить на водяную баню до загустения. Далее, залить поверх дрожжи, растворенные в стакане воды. Работоспособность 2-4 недели и более, если положить крахмал больше.

Напоследок о распылителя СО2 для аквариума.

Двуокись углерода можно подавать в аквариум при помощи распылителя: каменного, веточки рябины, колокола, а также непосредственно присоединять трубку СО2 во внешний фильтр. Какой способ лучше, какой применить, выбор за вами. Отметим, что большинство стеклянных, фирменных диффузоров пробиваются бражкой. Тугие диффузоры, например, Флюваловские нет.  Камешковый распылитель. Продается в любом зоомагазине. Недостаток – крупные пузырьки СО2, газ будет хуже растворяться. Веточка рябины. Дает мелкие пузырьки, но быстро забивается. Колокол. Покупной или самодельный. Некий колпачок-купол, задерживающий подаваемый СО2.

СО2 лесенки - хороший вариант для бражки.

Диффузоры - стеклянные пробиваются. Советуем при покупке изучить отзывы.  Распылитель СО2 устанавливает как можно ближе ко дну аквариума.

 

О результатах подачи СО2.

- после подачи СО2 и при должном освещении, аквариумные растения должны начать пузырять кислородом. Или как еще говорят - происходит перлинг растений. Наблюдается активный рост растений. - рыбки должны прекрасно себя чувствовать. В случае ухудшения самочувствия, СО2 отключают. Усиливают течение и аэрацию. Можно воспользоваться перекисью.- появление водорослей – признак избытка СО2. Необходимо уменьшить подачу углекислого газа. Или увеличить объем растений.- как убедиться в нормальной концентрации СО2. Сделать pH тест утром до включения света и второй вечером. Сравнить результаты и определиться все ли нормально. А лучше, приобрести дропчекер, о котором писали выше.

Рекомендуем так же почитать:

fanfishka.ru

Система со2 для аквариума своими руками

СО2 для аквариума своими руками

Периодическая подача углекислого газа в аквариум нужна потому, что в результате фильтрации и аэрации содержание СО2 в воде стремится к нулю. А в таких условиях водоросли в рыбьем домике могут погибнуть. Систему (или генератор) газовой углекислоты можно создать своими руками в домашних условиях. Это не так уж и сложно.

Со школьной скамьи любому человеку известно, что углекислый газ — основа процесса фотосинтеза — усваивается растениями из окружающего воздуха. Благодаря этому, собственно, и происходит рост наземной флоры. И в природной водной среде концентрация СО2 достаточна для развития водных растений.

Такие же условия необходимо создать и в аквариуме, который представляет собой замкнутую ёмкость. Создание концентрации углекислоты в пределах от 3 до 7 миллиграмм на литр аквы — вот необходимое условие, при котором аквариумные растения чувствуют себя нормально. Для этого совсем не обязательно приобретать промышленные углекислотные системы.

Питьевая газированная вода как источник углекислоты

Простейший способ подачи углекислого газа

Генератор СО2 своими руками

Создание аппарата

Необходимые реактивы

Начало работы

Альтернативные установки

aquariumguide.ru‏>

СО2 для аквариума и все ,что нужно об этом знать.

Газировка как источник СО2 для аквариума

Для наноаквариумов до 20 литров связываться с баллонной установкой СО2 не каждый захочет. Можно сделать генератор СО2 на браге или соде. Но можно поступить проще. Есть древний и незаслуженно забытый метод подачи СО2 это использование газированной воды. Газированная вода это своего рода концентрат углекислого газа уже растворенного в воде.

Содержание СО2 в газировке обычно около 5000-10000мг/л, а после открытия бутылки стремится к 1450мг/л. Если посчитать сколько необходимо газированной воды для доведения концентрации СО2 в аквариуме до 10мг/л, то выходит довольно экономично. Свежей газировки нужно всего 20мл на 10л аквариумной воды, что даст 10мг/л СО2 в аквариуме. Достаточно просто по утрам вносить газировку вместе с удобрениями. После стояния, вносить газировку можно и в больших количествах, так как углекислый газ выветривается.

Приблизительно, 1 литра газировки хватит для 10-20л аквариума на месяц. Подойдет любая газированная вода, конечно, кроме соленой. Лучше использовать самые дешевые. Их обычно делают из водопроводной воды :). Больше чем до 10мг/л лучше концентрацию СО2 таким методом не доводить.

Во-первых, не известно сколько углекислоты содержит ваша газировка 5000мг/л или 10000мг/л. Во-вторых, большие колебания концентрации СО2 в аквариуме не желательны. После добавления газировки концентрация будет постепенно снижаться из-за потребления аквариумными растениями. Постоянные колебания СО2 от 10мг/л до нуля и обратно не страшны. Но колебания от 20-30мг/л до нуля гораздо хуже для баланса в аквариуме.

Плюсы метода:

  • не нужен реактор для растворения СО2 и счетчик пузырьков, так как СО2 уже растворен в газированной воде;
  • простота использования;
  • экономичен в краткосрочной перспективе;
  • удобен для наноаквариумов.

Минусы метода:

  • нестабильная концентрация СО2 в аквариуме;
  • цена 1 грамма СО2 самая высокая из перечисленных методов, то есть неэкономичный в долгосрочной перспективе и для аквариумов большого объема;
  • слабая подача СО2 в сравнении с другими методами.

    Несколько практических советов:

    Для большинства растений, в т.ч. редких и трудных, достаточно лишь небольшой подкормки СО2, т.е. лучше недокормить, чем перекормить. Старайтесь держать индикатор в зеленой зоне.

    Тем не менее, если вдруг Вы обнаружите, что индикатор пожелтел или вовсе обесцветился, причин для паники нет.

    со2 для аквариума

  • Если с рыбами все в порядке, воду подменивать не надо, можете снять бутыль и отправить ее на время в холодильник, растения постепенно усвоят избыток углекислоты, наблюдайте за рыбами, в моих аквариумах часто зашкаливали индикаторы, особенно поначалу, но ни одного случая смерти рыб из-за отравления СО2 не было.

    Когда найдены оптимальные условия насыщения, нет смысла перекрывать подачу углекислоты на ночь, небольшой утренний избыток СО2 к вечеру будет выбран растениями, такой режим повторяет суточные колебания газового состава и Рh в естественных водоемах и благотворно сказывается на росте всех растений.

    ВАЖНО: при использовании в качестве реактора наружных фильтров или фильтров других моделей ни в коем случае не подаваете СО2 ДО фильтрующих элементов. СО2 должен подаваться только ПОСЛЕ всех наполнителей, иначе возможна гибель микрофлоры, населяющей фильтрующие материалы.

    При перезарядке бутыли не свешивайте свободный конец трубки с края аквариума – давление фильтра может перегнать воду через край и она потечет на пол.

    Если Вы забывчивы, не советую так же пользоваться колесиком зажима на трубке капельницы. Если закрыть его надолго во время брожения, возросшее внутри давление может разорвать бутыль.

    Не надо ставить бутыль на теплые лампы аквариума – брожение пойдет слишком интенсивно и закончится в короткий срок.

    Если в Вашем хозяйстве несколько аквариумов, советую снабдить каждый из них своей персональной бутылью. В моем хозяйстве есть разные аквариумы емкостью от 150 до 400 литров , я перезаряжаю все бутыли сразу, примерно раз в 10-15 дней.

  • Средства контроля за содержанием углекислого газа в аквариуме.

    Для контроля поступления СО2 в аквариуме существует, собственно, один способ- замер кислотности (РН) и карбонатной жесткости (КН) с последующим определением концентрации СО2 в воде с помощью таблицы Таблица содержания углекислого газа в аквариуме (CO2, СО2) . Несколько удобнее эту процедуру делать с помощью калькулятора calculator.php#j Одна особенность- в нашем калькуляторе, при вводе значения РН, в качестве десятичного знака нужно использовать не запятую, а точку.

    со2 для аквариума

  • На этом же принципе, основано и использование дроп-чекера (ДЧ). ДЧ представляет из себя емкость, в одну часть которой залит эталонный индикаторный раствор- вода с КН 4, в которую добавлен индикатор- аналог теста на РН. Вторая часть емкости открыта и в нее попадает аквариумная вода. Обе части емкости выполнены таким образом, что между индикаторным раствором и аквариумной водой всегда имеется воздушная подушка. Эдакий «сифон наоборот».
  • При повышении концентрации СО2 в аквариумной воде, часть его выходит из нее в воздушную подушку, выравнивая парциальное давление СО2 в воде и воздухе над ней. Одновременно с этим, СО2 растворяется в индикаторном растворе, так же выравнивая парциальное давление. В результате, концентрация СО2 в аквариумной воде и в индикаторном растворе становятся одинаковыми.
  • С изменением концентрации СО2 в индикаторном растворе, изменяется и его РН, на что индикатор реагирует изменением цвета. По его цвету и можно судить о концентрации СО2. При уменьшении концентрации СО2 в воде, все происходит в обратном порядке. Такой себе постоянно действующий тест на РН Дроп чекер своими руками (DIY CO2 Drop Checker) .
  • Очень удобный девайс с одним существенным недостатком- пока все вышеописанные процессы пройдут, проходит 2-3 часа- время запаздывания ДЧ. За это время можно и рыбу всю положить. Поэтому, я бы на этапе отработки подачи газа рекомендовал бы пользоваться тестами и калькулятором, чтоб иметь «мгновенные» значения, а ДЧ использовать для общего контроля в уже установившемся режиме.Счетчик пузырьков. Для отслеживания количества СО2 поступившего в аквариум используется счетчик пузырьков- небольшая прозрачная емкость, заполненная водой и врезанная в магистраль подачи газа. СО2, проходя через него визуально наблюдается в виде пузырьков, проходящих через воду с равными интервалами один от другого Продам баллооборудование CO2, диффузоры (СПб) (пятое фото слева, седьмое фото справа). Опять-таки, не понимаю, зачем платить, когда с таким же успехом можно взять для этой цели фильтр от капельницы))).
  • Под счетчиком пузырьков желательно ставить обратный клапан- чтоб в случае падения давления газа, вода не вытекла в трубку вниз. Обратный клапан, так же, следует ставить перед рябиновой веткой или диффузором в аквариуме. Обратный клапан в системе подачи углекислого газа для аквариума -Пирлинг- пузыряние растений. Несколько субъективный  метод контроля за содержанием СО2 в аквариуме.
  • Однако, факт остается фактом- опытный аквариумист, зная химсостав воды в своем аквариуме и свое освещение, по пузырянию растений вполне может сделать достаточно точный вывод о концентрации СО2 в воде. Тем более, что разные растения на это реагируют по-разному.

Простейший способ подачи углекислого газа

Генератор СО2 своими руками

Для изготовления работоспособного генератора газа с регулировкой подачи потребуется немного больше материалов и трудозатрат.

Принцип действия установки состоит в постепенной подаче лимонной кислоты из одного сосуда в другой, где находится пищевая сода. Кислота смешивается с содой, и выделяющийся в результате химической реакции СО2 поступает в аквариумный резервуар. Рассмотрим процесс изготовления по этапам работы.

со2 для аквариума

Создание аппарата

Необходимые реактивы

Начало работы

ЧИСТКА АКВАРИУМА ДЛЯ НОВИЧКОВ.

aquarium-fish-home.ru‏>

Как Сделать самому СО2 систему для аквариумных рас

Генератор CO2 в Аквариум на 500г соды СВОИМИ РУКАМИ. Diy CO2 system for Aquarium. Реактор CO2.

Болонная система СО2 своими руками , антикризисная

Болонная система СО2 своими руками , антикризисная

СО2 в аквариум - брага

Углекислый газ в аквариум (сода + лимонная кислота) #1

Другие статьи

akva-rybka.ru

Все о CO2 в аквариуме.

Многие, наверное, хотели иметь дома аквариум с растениями или рыбами, но не все понимают, что к его выбору нужно подходить с особой тщательностью. Одна из самых главных проблем — это подача CO2 (углекислый газ). Ведь растения на 40−50% состоят из него.

Краткое резюме о CO2:

Подача CO2 сильно усиливает рост растений. Оптимальная концентрация CO2 должна составлять 15−30 мг\л для аквариума с растениями и не более 30 мг\л с рыбами.Кислород не вытесняется из воды углекислым газом. Среднее значение подачи CO2 рассчитывается по формуле: при kHmin=4 градуса подача должна быть один пузырек в минуту на десять литров живого объема аквариума.Уровень кислотности (pH) должен быть 6,8−7,2 и за этим нужно внимательно следить, т.к. нитраты и CO2 понижает уровень pH, плюс он может изменятся сам в течении дня. Утром понижается и вечером повышается.

Для получения оптимального уровня pH нужно, чтобы мера щелочности (kH) воды не превышала 6 ед. Чтобы избежать критического падения pH, минимальный безопасный уровень kHmin.=4.

Концентрацию CO2 можно вычислить с фомощью формулы, но для начала нужно измерить pH и kH. CO2=3,0хkHх10^(7,00-pH). Получить CO2 можно из баллона или методом брожения.

Растениям также нужен свет, но не забывайте, что интенсивность освещения и подача CO2 должны быть прямопропорциональными.Основным строительным для клеток растений выступает углерод (СO2), поэтому подача СО2 просто необходима для эффективного и быстрого роста растений. В обычных условиях растения будут расти очень медленно или даже погибать, но подача СО2 ускорит темпы роста в 4−6 раз! Вы приятно удивлены результатами при подаче СО2 (углекислого газа) в аквариум, только не забывайте о правильном балансе со светом и жидкими удобрениями. Без углекислого газа вам останется только наблюдать за тем, как ваши растения будут гибнуть. Но все же СО2 это не единственное, что нужно растениям для роста, поэтому сразу после неожиданного быстрого роста, растения почувствуют нехватку в питательных веществах. Железо, магний, калий и другие микроэлементы очень быстро усваиваются растениями и в очень больших количествах, поэтому подачу углекислого газа (СО2) стоит в обязательном порядке скоординировать с подачей жидких удобрений.

Что нужно растениям для хорошего роста.Во-первых, хороший грунт с нужными для растения свойствами.Во-вторых, постоянная подача углекислого газа (CO2).В-третьих, у растения должна быть постоянная подача питательных веществ.В-четвертых, достаточное количество света и правильный состав спектра.

Для чего растениям CO2?

Все кто хочет иметь аквариум должны уяснить — все растения состоят из С (углерод) и без него они не выживут. Растения питаются, осуществляя фотосинтез. Этот процесс не возможен без кислорода, углерода, света и тд… Каждый из ингредиентов должен поступать в определенном количестве и продолжительности иначе фотосинтез не будет происходить.

Было проведено много исследований, которые показали, что при определенном количестве света, CO2 и питательных веществ, они являются основным фактором роста. Одно из таких исследований было проведено в компании Tropica, где выращивали риччию в течении двух недель. Исследование показало следующие результаты:Если подавать мало CO2 и света, то в 4 раза увеличивается рост растения.Без подачи CO2 и малом количестве света рост падает до нуля.Мало CO2 и большое количество света в 6 раз увеличивает рост растения.Много CO2 и много света из 1 грамма вырастает 6,9 грамм.

Вывод: Если мы хотим хороший результат, то не стоит увеличивать количество, лишь одного «ингредиента » (CO@ или свет) — это особого эффекта не даст, но при равном увеличении результат поразит вас! Если же вы будите делать как многие неопытные аквариумисты, например, держать аквариум в темноте без подачи CO2? То энергии у растения хватит только на временное поддержание жизни.

Для чего нужно соблюдать правила?

Вам не придется долго ждать. Чтобы композиция приобрела нужный вид. Всего 1,5−3 месяца.Вы можете чаще подрезать растения, детальнее редактировать композицию, делать её такой как вы захотите.Молодые листья выглядят лучше, а значит и композиция будет лучше.Если вы хотите стремиться к работам Takashi Amano, то быстрый рост растений просто необходим.

К 4-х кратному ускорению роста растения может привести даже небольшие дозы углекислого газа, и даже в малоосвещенных помещениях. Это происходит потому, что без каких либо вредоносных последствий, растение начинает производить на порядок больше хлорофилла, но при этом не рушит энергетический баланс. Таким образом, для извлечения углекислого газа (СО2) из воды, растение начинает тратить меньше энергии, собственно больше энергии растение затрачивает на оптимальную переработку данной ему малой доле световой энергии. Вот таким вот путем мы может очень эффективно увеличить рост растения, не перенасыщая его светом, так как оно может полностью использовать даваемый ему свет. Потому, что избыток света может неблагоприятно сказать на здоровом росте растения. Но в любом случае, если правильно увеличить и подачу углекислого газа и света, это произведет гораздо лучший эффект чем улучшение чего-то одного. То как каждый фотон используется в фотосинтезе, независимо от того, под каким углом он падает на лист, вы можете посмотреть на приведенном графике. Этот график явно показывает зависимость данного процесса в использовании молекул углекислого газа от света. Итак, из всего вышеописанного мы можем сделать два вывода. Первое: очень важно балансировать подачу углекислого газа (СО2) под интенсивность освещения и наоборот. Второе: даже если вы подаете малое освещение, уровень подачи углекислого газа (СО2) рекомендуется поддерживать не менее 15мг/л. Хотя лучше всегда поддерживать уровень подачи в районе 30мг/л. Ошибка многих любителей аквариумных растений — неопытность и незнание методики обогащения растений светом и углекислым газом. Обычно в таких случаях, темпы роста растений, у таких людей, стоят на уровне желтой линии, в редких случая — на зеленой. Достигнуть синей линии, можно просто усилив интенсивность подаваемого света. Но тут есть большая опасность водорослей. Только если вы согласуете подачу углекислого газа (СО2) с интенсивностью подаваемого света, вы сможете увеличить темпы роста в разы, то есть достигнуть красной линии. Вы будете удивлены, как быстро вырастут ваши растения!

Почему CO2?

Растения могут употреблять углерод в двух видах: газообразной (CO2) и растворенный в воде — бикарбонат (HCO3-). Растения отдают своё предпочтение чистому CO2 — это связано с тем, что для фотосинтеза придется утилизировать бикарбонат, а растения это делать затруднительно. Поэтому растворенный CO2 более выгодный способ для его получения.

Какая должна быть концентрация CO2?

Думаю, все знают, что CO2 отлично растворим, будь то воздух или вода. В воде CO2 растворяется намного медленнее, чем в воздухе, но водные растения все предусмотрели! У них есть специальный слой, который ускоряет этот процесс, у наземных растений он тоже есть, но он намного тоньше чем у водных. У водных растений такой слой составляет где-то 0.5мм. Чтобы обеспечить водным растениям оптимальный фотосинтез, концентрация CO2 должна составлять 15−30 мг\л, не превышая при этом концентрацию для рыб 30мг\л. Все это нужно для создания естественной окружающей среды, создающая главные сдерживающие факторы фотосинтеза.

CO2 и Кислород.

Многие очень сильно заблуждаются, когда думают, что кислород не вытесняется из воды углекислым газом, и что кислород в больших количествах необходим для дыхания рыб. Нет! Это не так! На самом деле уровень кислорода днем поднимается до 11 мг\л, что превышает 100%. Это происходит из-за активного роста растений. Уровень падает у утру до 8,0 мг\л при условиях, что температура воды 24С. Для нормальной жизни, рыбами необходимо 5мг\л (60%) кислорода растворенного в воде.

Включать или Отключать на ночь CO2?

На этот вопрос существует два мнения. В первом случае считают, что можно обойтись без CO2. Так как к утру уровень кислорода остается высоким, а уровень кислорода остается высоким, а уровень кислотности нормальным, если аквариум не более 1200 литров и в нем не проживает много рыб, то можно обойтись без начального поступления CO2. Вторая сторона считает, что CO2 нужно начинать подавать за 1−2 часа ДО включения света. Так как утром больше всего активен процесс фотосинтез, уровень O2 намного ниже, чем обычно.

Баланс CO2 и света.

Как мы уже говорили, интенсивность света должна соответствовать интенсивности подаваемому CO2. Даже исследования Tropica подтвердили слова Takashi Amano о том если концентрация подаваемого света и CO2 не равномерна, то это принесет только вред и не капли пользы. Все говорят об этом, но не всегда нужно большое количество CO2, это мы можем увидеть из формулы фотосинтеза: 6CO2+12h3O-> C6h22 O6+ 6h3O. В этот момент растения активно выделяют кислород, но, не смотря на это, растения становятся все более слабыми. Таким образом, потребление растениями азота и фосфата уменьшается. Если в аквариуме недостаточно CO2, а света больше чем в достатке, то начнут появляться водоросли. Не стоит добавлять никаких удобрений. Это принесет ещё больше вреда. Но слишком большое количество CO2 может стать токсичным для рыб и других обитателей аквариума. Для каждого растения нужно определенное количество света, а значит и определенное количество CO2. Некоторым нужно больше света, значит больше CO2. Takashi Amano считает, что не существует простых или сложных растений, просто есть растения любящие свет и любящие тень. Подаваемое количество света и CO2 единственное их различие. Если вы хотите завести аквариум то вам стоит с самого начала рассчитать. Какое количество света и CO2 будите подавать своим растениям, чтобы в дальнейшем это не вызвало неудобств.

Сколько нужно CO2

Не думайте, что на этом все, нужно также отслеживать равновесие pH и CO2. Чтобы это все отрегулировать, нужно чтобы kH, pH и CO2 были следующих параметров: kHmin=4 градусов, pH вечером = 7,2, а утром = 6,8, при таких условиях CO2 приобретет параметры от 15−30 мг\л. Это нужно понимать всем кто хочет иметь или же имеет аквариум, и понять, что все это взаимосвязано.Чем больше в воде гидроксидных ионов, тем меньше pH. Реакция воды может быть щелочной (pH>7.0), нейтральной(pH=7.0) и кислой(pH Концентрация растворенного в воде CO2 в природе бывает намного ниже, чем этого нужно для подводного царства, но в пресных водоемах на оборот, по отношению к её обитателям уровень слишком высокий и постоянно возобновляется благодаря течению и выделениям отложений на дне. Если искусственно не обогащать воду CO2, то собственных запасов хватит растениям, только на поддержание жизни и естественно не о каком росте и речи быть не может. Можно вычислить темп подачи с помощью следующей формулы, главное чтобы kH=2-4 при 1 пузырьку в минуту на 10 литров воды: CO2=7-19 мг\л при pH=6,8-7,2. Если kH окажется выше нормы, то вычислять нужно по формуле: kHx V(воды) \ 30. Выше мы уже говорили о том, как правильно использовать большие концентрации. Но они рассчитаны только на подачу CO2. Не забывайте отслеживать рост растения, не совершайте глупых ошибок, и самое главное не забывайте, что растением нужно одинаковое количество света и CO2.

Как влияет CO2 на уровень кислотности(pH).

Как упомянуто выше, для роста растений нужен углерод. Также рекомендуется держать низкий уровень водородного показателя (рН). Подавая СО2 в аквариумную воду мы выполняем обе задачи. Это происходит за счет того, что при попадании СО2 в воду, начинает образовываться угольная кислота. Вода соединяется с СО2 (Н2О+СО2=Н2СО3). Получившаяся кислота диссоциирует на ионы (Н+) и бикарбонат (НСО3-) (основа КН). А при повышении концентрации катионов водорода (Н+), водородный показатель (рН) уменьшается. Таким образом, мы одновременно даем нужный для роста растений углерод, и понижаем водородный показатель на более благоприятный уровень. Но тем не менее мы повышаем уровень углекислого газа (СО2), из-за понижения водородного показателя (рН). (см. ниже в разделе «рН»).Концентрация в воде углекислого газа, а также карбонатный буфер КН, сильно влияют на значение водородного показателя (рН). Из-за этого, связь (рНKH растворенный СО2) будет жесткой. Теперь нам нужно скоординировать подачу углекислого газа вместе с тем, какой уровень водородного показателя в аквариуме нам нужен. А водородный показатель, как раз таки определяется наличием карбонатного буфера КН. То есть единственное, что мы можем контролировать из наших 3-х показателей (рН, КН и СО2), это углекислый газ СО2, так как остальное является заданными величинами оптимальными для нормального роста растений. Таким образом, теперь мы должны подстроить подачу СО2 еще и под оптимальный уровень водородного показателя, которой должен быть равен рН=6.8−7.2, а не только под нужный уровень концентрации углекислого газа в воде. Для всего этого нам понадобится вода с жесткостью dGH=4−10, и собственно с исходным КН=2−8. Тогда оптимальная концентрация должна составлять СО2=15−30мг/л и рН=6.8−7.2.

Растениям необходимо лишь pH=6,8−7,2.

Растения хотят больше CO2.

Как уже говорилось растениям нужно очень много CO2, ведь они сами на 40−50% состоят из углерода и логично, что самым лучшим источником энергии для них будет углекислый газ. В воде он может находиться в двух видах: в виде бикарбоната (HCO3-) и углекислого газа. Диффузным путем они поглощают CO2через стенки клеток, тем самым насыщая свой растительный организм питательными веществами. Многие растения выбрали этот путь поглощения энергии, ведь так им на много проще. Так как, поглощая бикарбонат, они должны сначала поглотить HCO3− и уже только потом извлечь из него CO2 и насытиться им. Это происходит потому, что бикарбонат содержит связанный CO2. Теперь вы понимаете, почему не многие растения не выбирают второй способ поглощения CO2. Многие из них просто не способны на это и это понятно, ведь это очень сложный химический процесс.

В мягкой воде с pH меньше 7, 70% CO2 будет в доступном и усвояемом для растений виде и только 30% будет в бикарбонате. Это значит, что ниже будет показатель кислотности воды, тем больше кислорода смогут усвоить растения, так как он будет легко усвояемом растениями виде (газообразном). Поясню, это значит, что в мягкой воде с показателем kH=2−6 растения получат намного больше углерода, чем в жесткой воде.

Будет ли pH сохранять стабильность с одновременной деятельностью биологических веществ.

Поддерживание стабильного уровня водородного показателя (рН) в аквариуме.Слабые кислоты могут обладать особыми химическими свойствами, результат действий этих свойств и называется — буферизация. Диссоциирование слабых кислот в воде, формирует пары кислота-основание, которые имеют логарифмическое отношение друг к другу. При добавлении кислот и оснований в воду, водородный показатель сильно не измениться, то есть на графике отношения щелочность/кислота относительно водородного показателя, мы могли бы увидеть, что линия зависимости ниже или выше определенного значения водородного показателя (рН) будет плоской. Такое состояние водородного показателя (рН) называется «точкой равновесия», когда линия практически плоская, то есть сколько бы мы не добавляли оснований или кислот, это не будет сильно влиять на уровень водородного показателя (рН). Причем, что еще важно, точка равновесия не одна, и может варьироваться в зависимости от кислот.К примеру, точка равновесия угольной кислоты (Н2СО3), которую мы получаем при добавлении углекислого газа в воду (см. выше), составляет рН=6.37. Из-за того, что в аквариуме естественным биологическим путем производятся нитраты (NO3), которые являются кислотами, водородный уровень может понизиться, если до этого был чуть выше точки равновесия угольной кислоты. А данный уровень водородного показателя (рН=6.37) практически идеален для аквариумных растений, поэтому нам нужно стремиться сохранять именно этот уровень водородного показателя. Буферизации кислоты будет идти долго, перед тем как уровень водородного показателя приобретет желаемый результат, это происходит из-за того что начальный уровень водородного показателя будет выше точки равновесия, и нам нужно сместить его в сторону точки равновесия угольной кислоты. Это и будет для вас секретом стабильности уровня водородного показателя, (рН=6.8−7.2), как наилучший для Nature Aquarium.

Аммоний и токсичный аммиак, какое должно быть соотношение между ними.

Все мы знаем, что аммиак(Nh4) один из форм аммония (Nh5+) и к тому же он очень вреден для жизни, даже в малых количествах (0,06 мг\л). Соотношение аммоний \ аммиак зависит от количества pH. Если pH ниже, то соответственно в аквариуме меньше вредного аммиака. Он будет составлять около 0,5% при условии, что уровень кислотности будет равен 7, но если pH будет больше, например 7,5, то аммиак составит 4%. Что совсем не допустимо! Итак, нужно запомнить одно простое правило: если pH(уровень кислотности воды) более 7,0 , то количество аммиака увеличивается и вредит вашим растениям, рыбам. Можно гарантировать отсутствие аммиака в одном случает, если при pH= 6,8 — 7,2 в NA, тогдаДоля Nh4= 0,4−0,8%. Это потому что NA поддерживает низкий уровень Nh5+\ Nh4(аммоний \ аммиак).

Нитрифицирующие бактерии и их активность.

Бактерии активны на 85% от максимума при уровне кислотности 6,6 . Бактерии никогда не работали, и не будут работать на максимум. При малейших изменениях они могут повысить или понизить свою деятельность. Даже если состояние воды ухудшится, они справятся с нагрузкой, немного увеличив активность своей деятельности, сохранят стабильное положение аквариума. Будет создаваться такой же запас стабильности как с точкой pH. (pH=7,5−7,8 при этом параметре наблюдается максимальная активность нитрофикации, замедляется при pH= 7,5).

И так теперь все поняли, какой должен быть показатель pH (6,8−7,2) для хорошего роста долгой жизни растений. Теперь же давайте определимся, какой должен быть показатель kH.

1. Нужно учесть, что вода при kH=2−5 уже кислая, поэтому автоматически буферизируется на pH= 6,0−7,3. Так как содержится не угольная кислота (h3CO3), а углекислый газ причем в больших количествах. Чтобы избежать падение pH ниже чем вообще возможно, нужно чтобы минимальный уровень жесткости составлял минимум=4,0 при одновременной подаче CO2.

Почему нужно именно этот уровень и почему нельзя больше? Да потому что, если вода будет слишком жесткая, то есть kH>7,0 то и pH будет равняться = 7,8 и тогда придется превысить допустимую для рыб норму подачи CO2. А она должна составлять не более 30 мг\л. И тогда уже не будет никаких и способов и возможностей снизить хоть немного уровень кислотности в воде. Но и занижать уровень жесткости тоже нельзя, я напоминаю, что не ниже двух. Тогда придется увеличить подачу CO2 или придется повысить количество нитратов и при всех этих условиям может возникнуть угроза падения, причем резкого уровня кислотности- это меньше 6,8. Это будет просто ужасно для рыб и растений.

2. Чтобы поддержать стабильность кислотности в воде, нужно чтобы уровень жесткости имел минимум 4, ДО подачи CO2, чтобы в любую минуту не исчез карбонатный буфер, что может привести к снижению кислотности.

Также надеюсь, вы помните, что pH-kH-CO2 зависят друг от друга. Поэтому по таблице 1 зависимости, зная kH, взяв требуемую величину pH, мы сможем найти углекислый газ. То есть, какая получиться концентрация углекислого газа, если мы возьмем определенные параметры pH и kH.

Например: мы наблюдаем, что с pH=6,8−7,2; kH= 4−5, тогда концентрация углекислого газа (CO2) составит 7,6− 23,8 мг\л. Используя для воды такие параметры, получим нормальное количество pH и CO2. Причем CO2 не будет слишком много, он будет оптимально насыщать воду, что поможет ускорению роста растений.

3. Чтобы растения свободно в большом количестве потребляли углекислый газ нужно, чтобы жесткость воды была равная 3,5−4 и мера кислотности воды была всегда меньше 7. Исходя из этого (уровень карбонатной жесткости) kH играет главную роль в увеличении роста ваших растений. В отличии от общей жесткости (gH), он не сильно влияет на рост растений, поэтому он является второстепенным, не важным фактором в аквариуме, но все же чтобы не навредить рыбам этот показатель не должен быть слишком высоким или слишком низким.

aquahome.info

СО2 своими руками: "медленная" бражка

Прежде всего, до того как вмешиваться в экологию аквариума и что-то там менять, добавлять или как-то еще "переделывать", нужно более-менее отчетливо представлять себе, что и зачем делается. И как оно работает.

Иначе будет как в старом анекдоте - "все с крыши прыгнули - и я прыгну".

Добавление (и домашнее производство) углекислоты аквариумистами принимает все более массовый характер и, боюсь, введение всяких ограничений на выбросы СО2 промышленностью и автомобилями скоро станет весьма бессмысленны, ибо углекислотные девайсы аквариумистов (заводские и самодельные) превратились в такой же "необходимый аквариумный гламур", как здоровенные, чреватые протечками и жрущие кислород, не всегда используемые по предназначению канистры (подчас - для "гектара леса с одним неоном") или "спектральные лампАчки" (чаще всего - перемаркированные бытовые, порой - не самого лучшего качества).

Мы живем в интересную эпоху. В эпоху, когда обилие информации и ее доступность полностью "опрокинули" ситуацию: это обилие и доступность на глазах превращают знания и систему в работе мышления в ничто. Мы находимся в преддверии периода, когда люди, не будучи в состоянии знания применить и "переварить" переходят в состояние торжествующего невежества и полного краха причинно-следственных связей...

Но эту задачку пусть решают социологи, наша проблема гораздо приземленней - разобраться с углекислотой в аквариуме и научиться, если это нужно, недорого производить ее так, чтобы не перезаправлять систему (хоть она и копеечная) чаще 6-8 раз в год.

И это волне реально.

Прежде всего - что есть СО2 и зачем он нужен в аквариуме? СО2 - источник углерода, столь же необходимый растениям, как для нас с вами пища. СО2 потребляется растениями на свету, но не следует забывать, что в темноте им столь же необходим кислород.

Это "первые грабли", потому что если забыть об этом - ночью в аквариуме могут происходить заморы, а если и не будут - при недостатке кислорода будет происходить менее очевидная штука: плохой рост и даже гибель части флоры, на благо которой мы так старательно ставили правильный "спектральный свет" и едва не всем телом вдували этот несчастный СО2, багровея от ушей до самой задницы...

То есть - если нет нормальной диффузии (или аэрации) и наличия свободного кислорода на всю темновую фазу (его обычно навалом в начале, но густые заросли и гидробионты, которые не только рыба, но и миллиарды низших, аэробных, дышащих постоянно и круглосуточно, могут его довольно быстро "выбрать") - никакой СО2 нашему горю не поможет. Только - усугубит.И будет - "все пропало, шеф, все пропало".

Вторые грабли - это обычные для некоторых начинающих ситуации: есть аквариум, какой никакой свет (допустим, штатный, около трети ватта на литр), обычный грунт и во всем этом плохо растет валлиснерия с какой-нибудь несложной гигрофиллой и риччией. И начинают городить СО2 и тестировать воду... А травы - нескольуо чахлых пучков на 100-200 литров.Как правило, это самодосаточный и увлекательный процесс никоим образом не влияет на самочувствие неприхотливых и нетребовательных растений.

Они могут расти и при вдвое худшем свете, да и при втрое более сильном - прекрасно обходятся минимальным количеством свободного СО2, ресурсы аквариума позволили бы им расти без добавок углерода при очень сильном освещении - дело в таких ситуациях почти всегда не в воде или углекислоте, а в других условиях: бедный грунт, новая, не устоявшаяся банка, сами растения, приобретенные "при смерти".

Третьи грабли - "простая формула усеха - СО2, свет и питательные вещества" отнюдь не так роста, как она воспринимается с короткой строчки. Все элементы этой формулы находятся в динамическом равновесии и "разгон" системы о одному из элементов без учета остальных с неизбежностью и высокой скоростью демонстрирует нам вступление в силу закона Либиха: вместо стабильного и продолжительного благополучия у нас начинаются "качели", требующие тем большего вмешательства, чем сильнее "разгон", растения "устают и тужат".Поэтому вместо бодрого "пузыряния" (еще одна гламурная хохма - непременно, чтоб "пузыряло") у нас короткое время спустя наступает сначала откат к старой ситуации, а потом деградация и гибель части посадок. Или - нашествие водорослей, если зеленая масса высшей флоры не в состоянии "выжрать" тот "бульон и бифштекс", в которые мы превратили воду нашего любимого аквариума... Вообще, сстрашная штука - "любовь". Потому что вернее всего мы убиваем тех, кого любим...Особенно - домашних питомцев...Но это так, ОФФ, лирика...

Кроме того, в этой "формуле" обычно "забыта" температура, а ведь именно она (а не свет, удо или СО2, как можно было бы подумать), является основным регулятором фотосинтеза. Что отражено в регуляторной роли инфра-красных волн для фотосинтеза растений, о которой хорошо знают ботаники, но которую напрочь игнорируют многочисленные "околоаквариумные исследователи" - будто бы и нет такого вовсе. Видимо, это связано не с наукой, а исключительно с технологиями изготовления применяемых в аквариумистике источников света - такая наука на нынешнем этапе "невыгодна". Значит ее, типа, НЕТ.

Четвертые не совсем грабли, но волне очевидная штука - аквариумистика может обходиться без многих остромодных и гламурных штучек. И не просто может, а вполне обходится. И именно - успешная. Весь вопрос в том, чтобы используя знания и эти самые "причинно-следственные связи" нормально все в системе сбалансировать. И если она в равновесии - как можно меньше "трогать руками". И не "чинить" то, что итак не сломано и хорошо работает.

Однако, в хорошо освещенной и густо засаженной емкости растения могут испытывать определенный дефицит свободной углекислоты, особенно - в жесткой воде слабощелочной (или очень слабощелочной) реакции. Особенно - если в зарослях "перемешаны" стеноионные и эвриионные виды, виды, способные получать углерод из карбонатов (элодея, валлисненрия, эхинодорусы и т.п.) и виды, способные усваивать только свободную углекислоту (все мхи, лобелии, тонины, многие модные каризные травки, растущие только в мягкой и кислой воде).

Отчасти это "лечится" плотным рыбьим населением (в экологически благополучном аквариуме с большим количеством живности растения не испытывают дефицита СО2 и при весьма мощном свете), но некоторое обогащение воды углекислотой благотворно для такого водоема.

Проще всего это можно сделать с использованием браги.Но у нее есть несколько недостатков:- нестабильное брожение. В начале легко можно получить избыток СО2 (бесполезно "улетающий" и работающий на парниковый эффект или создающий излишне высокие концентрации), а потом выработка резко падает.- "круглосуточность" работы и сложность контроля ситуации- короткий период между "перезарядками" (2-3 недели).

Все эти недостатки легко решает баллонная система, но у нее другой недостаток - стоимость приобретения и необходимость более-менее квалифицировано выбрать и настроить оборудование.

Экспериментируя с бражкой мне удалось подобрать рецепт, озволяющий минимизировать недостатки этого способа получения СО2 - мой состав "ходит" очень долго (2-3 месяца) и очень равномерно.Безусловно, он не опровергает законы термодинамики (т.е. из количества вещества не получается больше газа, просто его выделение происходит очень медленно и равномерно), поэтому данный состав категорически не годится желающим получать высокие концентрации(вообще, для высоких стабильных концентраций никакая брага в принципе не хороша, только и однозначно - баллон), но волне решает проблему небольшого обогащения углекислотой хорошо освещенного аквариума с питательным грунтом и плотным населением, в жесткой воде которого сосуществуют стеноинные и эвриионные виды (думаю, похожая ситуация весьма веротна в очень многих аквариумах).

Итак, как ее сделать (история в картинках для двух аквариумов):

1. Берем ПЭТ емкость (в моем случае - емкости, 1,5 и 2 л.)

И насыпаем в них "сухое вещество" - 4-6 полных (с горкой) столовых ложек сахара, две-три (с горкой) крахмала, ложку соды.

2. Добавляем воду (уровень видно на фото - полторы-две кружки)

3. Ставим это на водяную баню (хинт: воды в кастрюле должно быть почти по уровень в бутылках, иначе на дне загустеет, а сверху будет жидко) и варим до готовности, до очень густого киселя.

Кисель должен получится реально очень густой: если положить бутылку на бок, он почти не стекает

4. Ставим все это остывать.

Пока оно стынет, можно сделать надежные и герметичные крышечки с креплением для трубок.Для этого понадобятся два штуцера от тормозной системы ВАЗ (12 р. пара в автозапчастях), шайбы и прокладки на 8 (все из ОБИ, около 40 р. за пару комплектов) и две гайки на 8 (это на мою пару бытылок).

В крышке горячим гвоздем и ножом делаем отверстие, в которое загонем штуцер резьбой вниз (в полость бутылки). Сверху целесообразно - через шайбу, снизу - прокладка+шайба+гайка.

Все это в сборе замечательно герметично, отлично удерживает трубку и стойко к перезардкам и манипуляциям (в отличие от герметизации всякими клеями, служащими на этих крышках из рук вон плохо).

Когда "кисель" остынет - добавляем в него по чайной ложке сухих дрожжей (я использую САФ), предварительно размешав в небольшом количестве воды (наример, в стопке).Затем ставим бутылки на места, подключаем и не трогаем два-три месяца. Газ выделяется медленно и равномерно, при использовании слабопроточных реакторов типа "колокол" процесс легко контролировать видуально: когда уровень в них уходит меньше половины и продолжает падать - бутылки можно "перезаряжать".

Проблем со сменой содержимого не возникает: перебродивший густой кисель снова превращается в жидкость (и легко выливается, мои бутылки пережили много перезарядок, это видно по их форме на фото: несколько водяных бань не проходят для пластика бесследно).

Каких-либо промежуточных емкостей не использую. Газ подается круглосуточно.

Удачи!

aquaria2.ru

CO2 установка для гидропоники своими руками

Ррешил  собрать СО2 генератор для своих салатов и соответственно все показать и рассказать Вам. И так теперь все по порядку.

Мне потребовалось:

1) бутылка на полтора литра

2) бутылка на 6 литров(объем зависит от площади посадок)

3) свечка, плоскогубцы, трубочка от сока (на фото ниже она появится), клепка(для прожига отверстий)

4) силиконовый шланг для аэрокомпрессора

5) дрожи саф  момент и килограмм сахара(зависит от объема бутыля для браги)

Общий вид всего оборудования и материалов, которые потребуются для создания CO2 генератора

Начнем с главной бутылке,в которой будет собственно и жить то, что будет вырабатывать СО2. Подача газа будет происходить через крышку, для этого берем крышку и делаем в ней отверстие. Нагрев клепку на огне прижимаем ее к крышке и получаем отверстие. После прожига аккуратно убираем излишки пластмассы и проверяем диаметр. Для того,  что бы шланг держался плотно в отверстие я использовал колпачок от шприца, предварительно отрезав лишнее.

Кстати – есть один нюанс, диаметр шланга меньше чем диаметр колпачка, для того, что бы все же шланг надеть его нужно опустить в кипяток на 5-7 секунд, за это время он станет очень мягким и податливым и наденется без проблем.

Вот так вот выглядит пробка в которую уже затолкал шланг с колпачком.

Одеваем на бутылку и проверяем герметичность и как держится

Дальше изготовим вторую пробку для бутылки поменьше, в которой будет вода. Вода выполняет роль фильтра  от масел и самой бражки.Берем все ту же клепку, свечку и плоскогубцы, нагреваем и дырявим. В этой крышке делаем два отверстия, одно вход, другое выход. Была простая крышка, стала волшебная.

Теперь проверяем диаметр и как это будет сидеть. Для входа и выхода я использовал обычную трубочку от сока, на которую надел шланг.

Теперь продеваем шланг через отверстие и тянем его вниз, трубочка входит с натяжкой, как раз то что нам нужно.

Собираем и проверяем как это будет выглядеть и держаться. Все отлично! Можем продолжать строительство.

Теперь вставляем в пробку вторую трубочку, но уже на выход, точно таким же образом, что бы трубочка вошла с натяжкой. Надеюсь все обратили внимание, что входная трубочка гораздо длиннее чем выходная. Входная должна погружаться в воду, а выходная отводить газ к растениям, который проходит через воду.

Вся система в сборе для последней проверки.

Система заняла свое законное место, откуда будет осуществляться подача нашего бесценного газа, который так необходим растениям. Осталось залить воды, насыпать сахара и дрожжей. На последней фотке виден шланг по которому собственно будет подаваться газ в разные точки установки, шланг лежит на люстре и будет соединен тройниками, от них будут идти еще шланги на растения. Так как СО2 тяжелее воздуха и опускается вниз, он будет подаваться с верху. Планирую сделать три места для подачи газа, с боков и посередине.

Источник http://www.ponics.ru

 Ждем комментариев...

Похожие материалы:

fotootcheti.blogspot.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта