Как передвигаются растения в природе. Движения растений

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Как передвигаются растения в природе


ЛОГИЧЕСКИЕ ВЫВОДЫ. СПОСОБ ПЕРЕДВИЖЕНИЯ ДЛЯ РАСТЕНИЙ

Логические выводы. Способ передвижения для растений

 

 

«в поисках истины я рассуждал сам с собой: «Что, если нет настоящих преподавателей медицины? Как я могу научиться этому искусству? Не иначе, как по великой открытой книге природы, написанной рукой Бога...» Порацельс

  

   Для того чтобы понять, какая пища является наиболее приемлемой для человека, можно использовать наблюдательность и здравый смысл. Если внимательно посмотреть на природу, то можно легко понять, что ягоды, фрукты и овощи не имеют никакого другого предназначения, кроме как быть съеденными, поскольку их сочная основа не нужна для прорастания семян. Если мы не съедим помидор, яблоко или клубнику, то они просто сгниют. Мякоть плодов — это тот дар, которым растения и деревья, не имеющие ног, вознаграждают человека, животных и птиц за то, что они разносят их семена на дальние расстояния. Защитная оболочка, которой растения окружают свои семена, позволяет им не перевариваться в организме человека или животных, а, выйдя из него, прорасти следующей весной вдалеке от того места, где созрел плод. Именно таким образом растения и «передвигаются», сохраняя себя как вид и расширяя зону своего произрастания. Это — хороший пример симбиоза, то есть взаимовыгодного сотрудничества: растения рады оказаться на новом месте, и человек вместе с птицами и животными рад полакомиться спелыми сочными плодами. Когда сезон свежих овощей и фруктов проходит, человек, птицы и другие животные делают на зиму запасы зерна, используя зерна завершивших свой жизненный цикл растений. Большая часть этих запасов будет съедена, но неизбежные «потери зерна при транспортировке», а также оставленные зерна вновь прорастут, дав новую жизнь растениям. Поэтому растительная диета является самой гуманной для человека.

   Растения тоже являются живыми существами, но нам нет необходимости убивать их для сохранения своей жизни: мы не рубим яблоню для того, чтобы сорвать яблоко, и не выдергиваем куст, чтобы собрать ягоды. Конечно, мы выкапываем клубни картофеля и собираем морковь, капусту и свеклу, но делаем это только после того, как эти растения завершат свой естественный жизненный цикл. Также и злаки мы собираем только после того, как растение засохнет. А то, что человек срывает зелень или косит траву, способствует более интенсивному росту этих растений и помогает им становиться еще гуще. Другим аргументом для людей, руководствующихся здравым смыслом, является то, что единственное ограничение в пищу во всех религиях мира являются ограничения на поедание плоти. И в этой связи совсем немаловажным является тот факт, что все смертельные болезни современности, передающиеся через продукты питания, передаются именно через плоть: коровье бешенство, птичий грипп, африканская чума, мгновенно поражающая свиней. Но еще никто не слышал, да и вряд ли когда-нибудь вообще услышит о посланном Богом огуречном бешенстве, морковном гриппе или яблочной чуме! Почему? Догадайтесь сами...

 

<<< Первоисточник: Усанин А.Е. "Пропуск в Третье Тысячелетие"

primetel.do.am

Составьте небольшой рассказ о транспорте воды и минеральных веществ в растении.

Клетки обмениваются различными веществами с окружающей их средой в результате диффузии. Однако перенос веществ обычной диффузией на большие расстояния неэффективен; возникает необходимость в специализированных системах транспорта. Такой перенос из одного места в другое осуществляется за счёт разности давлений в этих местах. Все переносимые вещества движутся с одинаковой скоростью в отличие от диффузии, где каждое вещество движется со своей скоростью в зависимости от градиента концентрации. У сосудистых растений передвижение веществ осуществляется по двум системам: ксилеме (вода и минеральные соли) и флоэме (органические вещества) . Передвижение веществ по ксилеме направлено от корней к надземным частям растения; по флоэме питательные вещества движутся от листьев. <a rel="nofollow" href="http://old.college.ru/biology/course/content/chapter10/section2/paragraph7/theory.html" target="_blank">http://old.college.ru/biology/course/content/chapter10/section2/paragraph7/theory.html</a>

Как же происходит передвижение веществ в растении, а именно воды с минеральными солями, растворенными в ней? Путем процесса всасывания вода и растворенные в ней соли попадают из почвы в корневую систему. Далее передвижение растворов минеральных солей осуществляется по стеблю от корня к листьям растения. Нужно разобраться, какие отделы стебля растения принимают активное участие в транспортировке воды и солей: сердцевина, древесина или кора. Можно провести простой эксперимент и поставить ветку яблони или какого-либо другого дерева в воду, куда предварительно были добавлены чернила. Если через день вытащить ветку из воды и разрезать стебель вдоль, то можно заметить, что только слой древесины поменял цвет. Кора и сердцевина остались неизменными. Таким образом, можно сделать вывод, что именно по древесине передвигается вода с растворами солей от корня к листьям. В состав древесины входят длинные полости в виде трубок, называемые сосудами растения. Именно они предназначены для перемещения по стеблю воды и минеральных солей. Принцип передвижения вдоль стебля органических соединений несколько отличается от описанного выше. Известно, что благодаря запасам органических веществ осуществляется рост и питание прорастающих семян. Можно понаблюдать, как помещенные в сосуд с водой ветки любого дерева «пускают» побеги с листьями, также у них быстро образуются придаточные корни под водой. Очевидно, появление новых структур обусловлено наличием в ветках запасов органических веществ. Перемещение органических веществ происходит по коре стебля. Это легко доказать, если со свежесрезанной ветки акации или каштана снять кору на небольшом участке ближе к нижнему краю, а затем поставить ветку в воду. Через некоторое время выше срезанной коры появится утолщение или наплыв, где просматриваются молодые придаточные корни. Ниже места, где кора удалена, корни или не появляются вовсе или очень тонкие и маленькие. Вывод напрашивается сам собой: срез коры не дает органическим веществам перемещаться от листьев к корням растения. В связи с этим выше среза образуется наплыв с придаточными корнями. Таким образом, это служит неопровержимым доказательством вышеприведенного утверждения о том, что транспортировка питательных веществ органической природы происходит по коре стебля растения. Распределяются эти вещества так, что в первую очередь обеспечивается рост молодых частей растения. Причем они передвигаются как вниз к корневой системе, так и вверх к побегам, цветкам и плодам растения.

touch.otvet.mail.ru

перечислите типы передвижения у животных организмов? пожалуйста помогите!

Движение – это основа всего живого на земле. Мир живой природы находится в непрерывном движении. Двигаются стада или стаи животных, отдельные организмы, двигаются бактерии и простейшие в капле воды. Растения поворачивают свои листья к солнцу, всё живое растёт. Способы движения за миллиарды лет прошли долгий путь эволюции. Типы передвижения животных. 1. Амебоидное движение Амебоидное движение присуще корненожкам и некоторым отдельным клеткам многоклеточных животных (например - лейкоцитам крови) . Пока у биологов нет единого мнения о том, что является причиной амебоидного движения. У клетки образуются выросты цитоплазмы, число и величина которых постоянно меняются, как меняется и форма самой клетки 2. Движения при помощи жгутиков и ресничек. Движения при помощи жгутиков и ресничек характерно не только для жгутиконосцев и инфузорий, оно присуще некоторым многоклеточным животным и их личинкам. У высокоорганизованных животных клетки, имеющие жгутики или реснички, встречаются в дыхательной, пищеварительной, половой системах. Строение всех жгутиков и ресничек практически одинаково. Вращаясь или взмахивая, жгутики и реснички создают движущую силу и закручивают тело вокруг собственной оси. Увеличение числа ресничек убыстряет передвижение. Такой способ движения свойствен обычно мелким беспозвоночным животным, обитающим в водной среде. Но есть еще большая группа животных. А как передвигаются они. 3. Движение с помощью мышц. Движение с помощью мышц осуществляется у многоклеточных животных. Характерно для беспозвоночных и позвоночных животных. Любое движение - это очень сложная, но слаженная деятельность больших групп мышц и биологических, химических, физических процессов в организме. Мышцы образованы мышечной тканью. Главная особенность мышечной ткани - способность сокращаться. За счет сокращения мышц и осуществляется движение. У круглых червей поочередное сокращение продольных мышц вызывает характерные изгибы тела. За счет этих телодвижений червь двигается вперед. Кольчатые черви освоили новые способы движения в связи с тем, что в их мускулатуре, помимо продольных мышц, появились поперечные мышцы. Поочередно сокращая поперечные и продольные мышцы, червь, используя щетинки на сегментах тела, раздвигает частички почвы и движется вперед. Пиявки освоили шагающие движения, используя для прикрепления присоски. У представителей класса Гидроидные передвижение происходит “шагами”. У круглых и кольчатых червей кожно-мускульный мешок взаимодействует с заключенной в нем жидкостью (гидроскелет) . Брюхоногие моллюски двигаются благодаря волнам сокращения, пробегающим по подошве ноги. Обильно выделяемая слизь облегчает скольжение и ускоряет движение. Двустворчатые моллюски двигаются с помощью мускулистой ноги, а головоногие освоили реактивный способ передвижения, выталкивая воду из мантийной полости. Членистоногих отличает наружный скелет. Многие ракообразные для передвижения по грунту используют ходильные ноги, а для плавания им служит либо хвостовой плавник, либо плавательные ноги. Любой из этих способов передвижения возможен при наличии хорошо развитой мускулатуры и подвижном сочленении конечностей с туловищем. Паукообразные передвигаются на ходильных ножках, а мелкие пауки, образующие паутину, могут перемещаться с помощью ветра. У большинства членистоногих специальными органами передвижения служат не только ноги, но и (в зависимости от систематической принадлежности) другие образования, например крылья у насекомых. У кузнечиков с низкой частотой биения крыльев мышцы прикрепляются к их основаниям. Пресмыкающиеся Короткие конечности пресмыкающихся, расположенные по бокам туловища, не поднимают тело высоко над землей, и оно волочится по земле. Птицы Наиболее развиты (до 25% от массы птицы) мышцы, двигающие крыльями Подробно смотрите <a href="/" rel="nofollow" title="6625:##:articles/505981/">[ссылка заблокирована по решению администрации проекта]</a>

плавают, ползают, ходят, бегают, прыгают, летают

1. Амебоидное движение 2. Движения при помощи жгутиков и ресничек. 3. Движение с помощью мышц. Удачи!

ходьба, бег, прыжки, ползание, лазание, полет, парение, плавание, кувыркание, скольжение, реактивное передвижение в воде...

Способы передвижения животных. Классификация Все они по типу делятся на несколько больших групп. Амебоидное. Название происходит от слова амеба. Это простейшее животное не имеет даже постоянной формы, а ее тело состоит из одной клетки и имеет свойство постоянно изменять очертания. На теле образуются своеобразные выросты, называемые ложноножками (псевдоподиями). Благодаря этим приспособлениям это простейшее способно передвигаться. Под микроскопом, достаточно сильным, можно видеть, как оно как бы приподнимается на коротеньких выростах, как на лапках, и перекатывается, осуществляя двигательный процесс. Реактивное. Некоторые другие простейшие (например, грегарины) передвигаются таким способом, резко выделяя из окончания тельца слизь, которая и толкает данное животное вперед. Существуют также простейшие, которые парят пассивно в какой-либо среде (к примеру, в воде). А еще каковы способы передвижения одноклеточных животных? Они отличаются завидным разнообразием. При помощи жгутиков и ресничек. Такие способы передвижения животных также характерны для простейших. Приспособления осуществляют различные движения: волнообразные, колебательные, вращательные. При помощи данных движений движется и само животное (к примеру, эвглена), совершая спиралевидную траекторию. По данным норвежских ученых, некоторые жгутиковые, обитающие в морях, могут вращаться вокруг оси с огромной скоростью: 10 оборотов за секунду! С помощью мышц. Эти способы передвижения животных характерны для многих видов, обладающих мышечной структурой или подобием ее. При помощи мышц движутся и все млекопитающие, к которым относится и человек. Почитай там всё есть: FB.ru: <a rel="nofollow" href="http://fb.ru/article/183863/sposobyi-peredvijeniya-jivotnyih-materialyi-dlya-uroka" target="_blank">http://fb.ru/article/183863/sposobyi-peredvijeniya-jivotnyih-materialyi-dlya-uroka</a>

плавают, ползают, ходят, прыгают, летают

1. Амебоидное движение 2. Движения при помощи жгутиков и ресничек. 3. Движение с помощью мышц.

touch.otvet.mail.ru

Какие существуют основные способы передвижения животных? Биология

Движение – это основа всего живого на земле. Мир живой природы находится в непрерывном движении. Двигаются стада или стаи животных, отдельные организмы, двигаются бактерии и простейшие в капле воды. Растения поворачивают свои листья к солнцу, всё живое растёт. Способы движения за миллиарды лет прошли долгий путь эволюции. Типы передвижения животных. 1. Амебоидное движение Амебоидное движение присуще корненожкам и некоторым отдельным клеткам многоклеточных животных (например - лейкоцитам крови) . Пока у биологов нет единого мнения о том, что является причиной амебоидного движения. У клетки образуются выросты цитоплазмы, число и величина которых постоянно меняются, как меняется и форма самой клетки 2. Движения при помощи жгутиков и ресничек. Движения при помощи жгутиков и ресничек характерно не только для жгутиконосцев и инфузорий, оно присуще некоторым многоклеточным животным и их личинкам. У высокоорганизованных животных клетки, имеющие жгутики или реснички, встречаются в дыхательной, пищеварительной, половой системах. Строение всех жгутиков и ресничек практически одинаково. Вращаясь или взмахивая, жгутики и реснички создают движущую силу и закручивают тело вокруг собственной оси. Увеличение числа ресничек убыстряет передвижение. Такой способ движения свойствен обычно мелким беспозвоночным животным, обитающим в водной среде. Но есть еще большая группа животных. А как передвигаются они. 3. Движение с помощью мышц. Движение с помощью мышц осуществляется у многоклеточных животных. Характерно для беспозвоночных и позвоночных животных. Любое движение - это очень сложная, но слаженная деятельность больших групп мышц и биологических, химических, физических процессов в организме. Мышцы образованы мышечной тканью. Главная особенность мышечной ткани - способность сокращаться. За счет сокращения мышц и осуществляется движение. У круглых червей поочередное сокращение продольных мышц вызывает характерные изгибы тела. За счет этих телодвижений червь двигается вперед. Кольчатые черви освоили новые способы движения в связи с тем, что в их мускулатуре, помимо продольных мышц, появились поперечные мышцы. Поочередно сокращая поперечные и продольные мышцы, червь, используя щетинки на сегментах тела, раздвигает частички почвы и движется вперед. Пиявки освоили шагающие движения, используя для прикрепления присоски. У представителей класса Гидроидные передвижение происходит “шагами”. У круглых и кольчатых червей кожно-мускульный мешок взаимодействует с заключенной в нем жидкостью (гидроскелет) . Брюхоногие моллюски двигаются благодаря волнам сокращения, пробегающим по подошве ноги. Обильно выделяемая слизь облегчает скольжение и ускоряет движение. Двустворчатые моллюски двигаются с помощью мускулистой ноги, а головоногие освоили реактивный способ передвижения, выталкивая воду из мантийной полости. Членистоногих отличает наружный скелет. Многие ракообразные для передвижения по грунту используют ходильные ноги, а для плавания им служит либо хвостовой плавник, либо плавательные ноги. Любой из этих способов передвижения возможен при наличии хорошо развитой мускулатуры и подвижном сочленении конечностей с туловищем. Паукообразные передвигаются на ходильных ножках, а мелкие пауки, образующие паутину, могут перемещаться с помощью ветра. У большинства членистоногих специальными органами передвижения служат не только ноги, но и (в зависимости от систематической принадлежности) другие образования, например крылья у насекомых. У кузнечиков с низкой частотой биения крыльев мышцы прикрепляются к их основаниям. Пресмыкающиеся Короткие конечности пресмыкающихся, расположенные по бокам туловища, не поднимают тело высоко над землей, и оно волочится по земле. Птицы Наиболее развиты (до 25% от массы птицы) мышцы, двигающие крыльями

touch.otvet.mail.ru

Познавательный портал. Растения и животные. Страны и государства планеты. Cправочная информация о мире. Дополнительные материалы

Мир растений кажется нам неподвижным. Но если внимательно наблюдать за растениями, нетрудно убедиться, что это далеко не так. Прежде всего они растут и, значит, совершают ростовые движения. Посаженное во влажную почву семя фасоли трогается в рост, своим согнутым подсемядольным коленом пробуравливает почву и выносит на поверхность две семядоли. Они зеленеют и увеличиваются, затем начинают образовываться настоящие листья. Примерно через месяц с небольшим растение зацвело, а через два с лишним месяца на нем образовались плоды — бобы.

Хорошо можно увидеть ростовые движения у растений с помощью специальной киносъемки. То, что происходило в течение суток, проходит перед вами за несколько секунд: на ваших глазах распускаются цветочные почки плодовых деревьев, прорастают семена, проростки пробивают себе дорогу в почве, извиваясь как змеи. Обычно ростовые движения очень медленны и потому незаметны для нас. Но побеги бамбука растут очень быстро — в среднем на 0,6 мм в минуту. Еще быстрее растут плодовые тела некоторых грибов. Например, плодовое тело гриба диктиофора вырастает за одну минуту на 5 мм.

Листья герани поворачиваются к свету -это фототропизм.

Гораздо большей подвижностью, чем высшие растения (мхи, папоротники, хвойные и цветковые растения), обладают многие низшие растения (грибы и водоросли). Так, например, одноклеточная водоросль хламидомонада при помощи двух жгутиков легко перемещается из не освещенной солнцем стороны аквариума на освещенную. Так же движутся многие бактерии и зооспоры (клетки, служащие для размножения) многих водорослей и грибов.

Но вернемся к цветковым растениям. Мы уже знаем, что они совершают активные движения, связанные с процессами роста. Эти ростовые движения бывают двух типов: тропизмы и настии.

Тропизмы — это движения, вызванные односторонним раздражением растения каким-либо внешним фактором: светом, силой тяжести, химическими веществами. Если проростки пшеницы или овса поставить на подоконник, то через некоторое время они все повернутся в сторону света, окажутся как бы зачесанными в одну сторону. Это фототропизм. Благодаря ему растения лучше используют энергию солнечного луча.

Почему стебель обычно растет вверх, а корень вниз? Оказывается, стебель и корень по-разному отвечают на действие силы тяжести, и потому их движения — геотропизм — направлены в разные стороны. Стебель растет в направлении, противоположном действию силы тяжести (отрицательный геотропизм), а корень — по направлению действия этой силы (положительный геотропизм).

При ярком солнечном свете соцветия одуванчика открываются, с уменьшением освещенности они закрываются — это фотонастия.

Любой тропизм может быть отрицательным или положительным. Пыльцевая трубка пыльцевого зерна, проросшего на рыльце пестика растения своего вида, растет прямо и достигает семязачатка (семяпочки). Это положительный хемотропизм. Если же пыльцевое зерно попадает на рыльце цветка чужого вида, то трубка вначале растет прямо, а затем загибается в обратную сторону. Это отрицательный хемотропизм. В данном случае он препятствует оплодотворению яйцеклетки в семязачатке. Очевидно, вещества, выделяемые пестиком растения своего вида, вызывают положительный хемотропизм, а чужого вида — отрицательный.

Как мы убедились, тропизмы играют большую роль в жизни растения. Начало изучению причин, вызывающих тропизмы, положил великий английский ученый Чарлз Дарвин. Он установил, что восприятие раздражения происходит в точке роста растения, а изгиб — ниже, в зоне растяжения клеток. Дарвин высказал предположение, что в точке роста образуется вещество, которое притекает затем к зоне растяжения, где и происходит изгиб. Эта мысль Дарвина не была понятна современникам и подверглась резкой критике. Только в XX в. опытным путем было доказано, что Дарвин был прав. Оказалось, что в верхушках (конусах нарастания) стебля и корня образуется гормон гетероауксин — органическая (бета-индолилуксусная) кислота. Под влиянием освещения происходит неравномерное распределение гетероауксина в растении: на освещенной стороне гетероауксина меньше, а на теневой больше. Гетероауксин вызывает усиленный обмен веществ в цитоплазме и этим способствует более интенсивному росту растения, так как он тесно связан с обменом веществ. Поэтому теневая сторона растения растет сильнее и оно изгибается в сторону света.

Кислица при раздражении, складывая листья, совершает сократительные движения.

Познакомимся теперь с настиями растений. Настии — это движения, связанные с рассеянным (диффузным) влиянием окружающих условий на растения. Настии тоже бывают положительными и отрицательными. Утром, при ярком солнечном свете, открываются соцветия (корзинки) одуванчика; с уменьшением освещенности они закрываются. Это пример положительной фотонастии. Цветки душистого табака, наоборот, раскрываются в вечернее время, с уменьшением освещенности. Это отрицательная фотонастия. У шафрана цветки закрываются при снижении температуры воздуха — это термонастия. В основе настий тоже лежит неравномерный рост. Если сильнее растет верхняя сторона лепестков цветка — он раскрывается, если нижняя сторона — он закрывается.

Некоторые растения совершают движения более быстрые, чем ростовые. Таковы, например, сократительные движения листьев у стыдливой мимозы и кислицы. Стыдливая мимоза — растение родом из Индии — при прикосновении быстро складывает свои листья. У нас есть своя северная стыдливая мимоза — это широко распространенная в наших лесах кислица (заячья капуста). В 1871 г. профессор А. Ф. Баталии возвращался на извозчике в город после загородной прогулки в окрестностях Петербурга. Ехал он по очень тряской булыжной мостовой и вдруг заметил, что собранная им кислица сложила листья. Так было открыто удивительное свойство этого растения складывать листья под влиянием раздражения. Кислица складывает листья и вечером, причем в пасмурную погоду это происходит обычно на час раньше, чем в ясную. Наблюдая в лесу за кислицей, вы увидите, что листья у нее сложены там, где на них падают солнечные блики. Значит, кислица складывает листья не только от темноты, но и от сильного света. Если кислицу, растущую в тарелке или блюдечке, выставить на сильный солнечный свет, она на глазах, в течение 3—5 мин, сложит свои листья. Если затем ее поставить в тень, она раскроет листья не скоро, а через 40—50 мин.

Отчего же зависят движения листьев стыдливой мимозы или несколько более медленные движения листьев кислицы? Механизм этих движений связан с особыми сократительными белками, сокращающимися при раздражении. При их сокращении тратится энергия, образуемая в процессе дыхания. Она накапливается в растении в виде богатого энергией фосфорного соединения — аденозинтрифосфорной кислоты (АТФ), связанной с сократительными белками. При раздражении особый фермент разлагает АТФ, связь ее с сократительными белками распадается, при этом освобождается заключенная в АТФ энергия. Она и расходуется на сокращение белков — листья складываются. Через определенное время в процессе дыхания снова образуется АТФ и восстанавливается ее связь с сократительными белками — листья растения раскрываются. Вот почему у кислицы после раздражения ее сильным светом листья распрямляются не сразу.

Таким образом, складывание листьев у стыдливой мимозы и кислицы связано не только с изменениями в окружающей среде, но и с внутренними факторами, и в частности с процессом дыхания. Мы уже отмечали, что кислица складывает свои листья вечером, когда начинает темнеть. Раскрывает их она не с первыми лучами солнца, а еще ночью, в полной темноте, когда в процессе дыхания в ее клетках на-копит,ся достаточно АТФ, чтобы восстановилась связь между АТФ и сократительными белками.

Наблюдения за кислицей в природе принесли и другую неожиданность. Летом в лесу среди растений кислицы с открытыми листьями встречалось иногда несколько экземпляров со сложенными. Оказалось, что эти растения цвели, хотя цветение их было внешне незаметно, так как кислица летом, в отличие от весеннего цветения, образует невзрачные нераскрывшиеся цветки. Очевидно, во время цветения у кислицы тратится много веществ на образование цветков и не хватает энергии для того, чтобы раскрыть листья.

В основе сократительных движений у растений и животных лежат общие причины. Об этом свидетельствуют их сходные ответные реакции на раздражение. Мимоза и кислица, как и животные, имеют скрытый период раздражения, который составляет 0,1 с. При длительном раздражении у мимозы наблюдаются явления утомления и скрытый период раздражения удлиняется до 0,14 с.

Помимо перечисленных нами движений существуют еще движения, связанные с изменением напряжения тканей под влиянием прикосновения. Например, при прикосновении зрелый плод растения бешеного огурца как бы «выплевывает» свои семена. При надавливании или при потере воды тургор внутренних тканей околоплодника повышается неравномерно, и плод мгновенно раскрывается. Подобную картину можно наблюдать, коснувшись плодов растения недотроги. Возможно, что во многих случаях настий большое значение имеют сократительные движения, а не ростовые, но это еще предстоит окончательно доказать.

clow.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта