Есть ли нервная система у растений. И у травы есть нервы?

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Пси-Фактор. Есть ли нервная система у растений


И у травы есть нервы?. Есть ли тайны у растений?

И у травы есть нервы?

Работает гидравлика. Итак, мы с вами разобрались, что приверженцев животной пищи в растительном мире достаточно много - несколько десятков, а то и сотен видов. Ну а каков механизм, приводящий в действие их ловушки? Как вообще растения могут двигаться, поднимая и опуская листья как гелиотроп, поворачивая соцветья вслед за светилом подобно подсолнуху, или неустанно разбрасывая во все стороны свои ползучие побеги подобно ежевике или хмелю.

"Уже с первых шагов ему приходилось решать дополнительную задачу по сравнению, скажем, с близкорастущими одуванчиками или крапивой, - пишет о хмеле Владимир Солоухин. - У одуванчика есть, наверное, свои не менее сложные задачи, но все же на первых порах ему нужно просто вырасти, то есть создать розетку листьев, и выгнать трубчатый стебель. Влага ему дана, солнце ему дано, а также дано и место под солнцем. Стой на этом месте и расти себе, наслаждайся жизнью.

Другое дело у хмеля. Едва-едва высунувшись из земли, он должен постоянно озираться и шарить вокруг себя, ища, за что бы ему ухватиться, на какую бы опереться надежную земную опору". И далее: "Естественное стремление всякого ростка расти вверх преобладает и здесь. Но уже после пятидесяти сантиметров жирный, тяжелый побег льнет к земле. Получается, что он растет не вертикально и не горизонтально, а по кривой, по дуге.

Эта упругая дуга может сохраняться некоторое время, но если побег перевалит за метр длины и все еще не найдет, за что ухватиться, то ему волей-неволей придется лечь на землю и ползти по ней. Только растущая, ищущая часть его будет по-прежнему и всегда нацелена кверху. Хмель, ползя по земле, хватается за встречные травы, но они оказываются слабоватыми для него, и он ползет, пресмыкаясь, все дальше, шаря впереди себя чутким кончиком.

Что делали бы вы, очутившись в темноте, если бы вам нужно было бы идти вперед и нашарить дверную ручку?

Очевидно, вы стали бы совершать вытянутой вперед рукой вращательное, шарящее движение. То же самое делает растущий хмель. Его шершавый, как бы сразу прилипающий кончик все время совершает, продвигаясь вперед или вверх, однообразное вращательное движение по часовой стрелке. И если попадется на пути дерево, телеграфный столб, водосточная труба, нарочно подставленный шест, любая вертикаль, нацеленная в небо, хмель быстро, в течение одного дня, взлетает до самого верха, а растущий конец его снова шарит вокруг себя в пустом пространстве..."

Не выяснен вопрос, пишет далее писатель, чувствует ли хмель возможную опору на некотором небольшом расстоянии и ползет ли он в ее сторону.

Практики, впрочем, утверждают, что очень часто хмель как бы чувствует, где ему подставлена опора, и большая часть стеблей направляется именно в ту сторону.

А когда один из стеблей Солоухин специально не захлестнул за шпагат, протянутый от земли до крыши дома, так он, бедняга, в поисках опоры переполз и двор, и лужайку, и помойку, напоминая человека, преодолевающего трясину и уже почти засосанного ею.

Тело его увязает в грязи и воде, но голову он из последних сил старается держать над водой.

"Я бы сказал тут, - заключает свой рассказ писатель, - кого еще мне напомнил этот хмель, если бы не было опасности переключиться от невинных заметок о траве в область психологического романа".

Литератор побоялся возникших у него невольных ассоциаций, а вот ученые, как мы убедимся чуть позднее, нет. Но прежде давайте задумаемся вот над каким вопросом: "А что за сила гонит хмель и другие растения в рост, заставляет их изгибаться в том или ином направлении?"

Понятное дело, в мире растений нет стальных пружин или иных упругих элементов, чтобы с их помощью защелкивать свои "капканы". Поэтому чаще всего растения используют в таких случаях гидравлику. Гидравлические насосы и приводы вообще совершают основную работу в растении. Это с их помощью, например, влага поднимается из-под земли до самой макушки, преодолевая порою перепады во многие десятки метров - результат, которого может добиться далеко не всякий конструктор обычных насосов. Причем в отличие от механических природные насосы работают совершенно бесшумно и очень экономно.

Гидравлику же используют растения и для осуществления собственного движения. Вспомните хотя бы ту же "привычку" обыкновенного подсолнуха поворачивать свою корзинку вслед за движением светила. Обеспечивает такое движение опять-таки привод на основе гидравлики.

Ну а как, интересно, она работает?

Оказывается, на этот вопрос пытался ответить еще Чарлз Дарвин. Он показал, что каждый усик растения обладает энергией независимого движения. Согласно формулировке ученого, "растения получают и проявляют эту энергию только тогда, когда это дает им какое-то преимущество".

Эту мысль попытался развить талантливый венский биолог с галльской фамилией Рауль Франсе. Он показал, что червеобразные корешки, непрерывно продвигающиеся вниз, в почву, знают, куда именно им двигаться за счет небольших пустотелых камер, в которых может болтаться шарик крахмала, показывающий направление силы тяжести.

Если земля оказывается сухой, корни поворачивают в сторону влажной почвы, развивая энергию, достаточную, чтобы пробуравить бетон. Причем когда специфические буравящие клетки изнашиваются вследствие контакта с камнями, галькой, песком, то они быстро заменяются новыми. Когда же корешки достигают влаги и источника питательных веществ, то они отмирают и подлежат замене клетками, предназначенными уже для поглощения минеральных солей и воды.

Не существует ни одного растения, говорит Франсе, которое бы могло существовать без движения. Любой рост - это последовательность движений, растения постоянно заняты изгибанием, вращением, трепетанием. Когда усик того же хмеля, совершающий полный круговой цикл за 67 минут, находит опору, то в течение всего 20 секунд он начинает обвиваться вокруг него, и уже через час обвивается столь прочно, что его трудно оторвать.

Вот какой силой обладает гидравлика. Причем тот же Чарлз Дарвин попытался выяснить, как именно осуществляется механизм движения. Он открыл, что поверхностные клетки, скажем, ножки листа росянки, содержат одну большую вакуоль, заполненную клеточным соком. При раздражении она разделяется на ряд более мелких вакуолей причудливой формы, как бы переплетающихся друг с другом. И растение сворачивает лист в кулек.

"Крамольные" мысли естествоиспытателя. Конечно, в тонкостях подобных процессов надо еще разбираться и разбираться. Причем делать это совместными усилиями должны ботаники, гидравлики и ... электронщики! В самом деле, ведь мы еще ни слова не сказали о принципах работы тех датчиков, по сигналу которых и начинает работать механизм ловушки.

Опять-таки одним из первых заинтересовался этой проблемой Чарлз Дарвин. Результаты его исследований изложены в двух книгах - "Насекомоядные растения" и "Способность к движению у растений".

Первое, что чрезвычайно удивило Дарвина, - весьма высокая чувствительность органов насекомоядных и вьющихся растений. Например, движение листа росянки вызывал уже отрезок волоса весом 0,000822 мг, находившийся в соприкосновении со щупальцем весьма непродолжительное время. Не меньшей оказалась чувствительность к прикосновению у усиков некоторых лиан. Дарвин наблюдал изгибание усика под действием на него шелковинки весом всего 0,00025 мг!

Столь высокую чувствительность, конечно, не могли обеспечить чисто механические устройства, бытовавшие во времена Дарвина. Поэтому ученый ищет аналогии увиденному опять-таки в мире живого. Он сравнивает чувствительность растения с раздражением человеческого нерва. Более того, он отмечает, что подобные реакции имеют не только высокую чувствительность, но и избирательность. Например, ни щупальца росянки, ни усики вьющихся растений нс реагируют на удары дождевых капель.

А то же вьющееся растение, как отмечает Франсе, нуждаясь в опоре, будет упорно ползти к ближайшей.

Стоит эту опору сдвинуть, и виноградная лоза в течение нескольких часов изменит свое продвижение, повернет опять-таки к ней. Но как растение чувствует, в каком именно направлении ему нужно двигаться?

факты заставляли подумать о возможности существования у растений не только нечто похожего на нервную систему, но и зачатков ... соображения!

Понятно, такие "крамольные" мысли вызвали бурю в научном мире. Дарвина, несмотря на его высокий авторитет, приобретенный после окончания работы над "Происхождением видов", обвинили, мягко выражаясь, в недомыслии.

Например, вот что писал по этому поводу директор Петербургского ботанического сада Р.Э.Регель: "Знаменитый английский ученый Дарвин выставил в новейшее время смелую гипотезу, что существуют растения, которые ловят насекомых и даже едят их. Но если мы сопоставим вместе все известное, то должны прийти к заключению, что теория Дарвина принадлежит к числу тех теорий, над которыми всякий здравомыслящий ботаник и естествоиспытатель просто смеялся бы..."

Однако история постепенно все расставляет на свои места. И у нас сегодня есть основания полагать, что Дарвин больше ошибался в своем общепризнанном научном труде о происхождении видов, чем в последней книге о движении растений. Все больше современных ученых приходят к выводу, что роль эволюции в учении Дарвина преувеличена. А вот что касается наличия чувств у растений, и возможно, даже зачатков мышления, то тут есть над чем поразмыслить в свете фактов, накопившихся в течение нашего века.

Карикатура клетки. В свое время у Дарвина нашлись не только противники, но и сторонники. Например, в 1887 году В.Бердон-Сандерсон установил удивительный факт: при раздражении в листочке венериной мухоловки происходят электрические явления, в точности напоминающие те, которые возникают при распространении возбуждения в нервномышечных волокнах животных.

Более подробно прохождение электрических сигналов в растении было изучено индийским исследователем Дж.Ч.Босом (тем самым, что пугал поваров электричеством из гороха) на примере мимозы. Она оказалась более удобным объектом для исследования электрических явлений в листе, чем росянка или венерина мухоловка.

Бос сконструировал несколько приборов, позволявших очень точно регистрировать временной ход реакций раздражения. С их помощью ему удалось установить, что растение реагирует на прикосновение хотя и быстро, но не мгновенно - время запаздывания около 0,1 секунды. И такая скорость реакции сопоставима со скоростью нервной реакции многих животных.

Период же сокращений, то есть время полного складывания листа, оказался равным в среднем 3 секундам.

Причем мимоза реагировала по-разному в различные времена года: зимою она как бы засыпала, к лету пробуждалась.

Кроме того, на время реакции оказывали влияние различные наркотические вещества и даже ... алкоголь! Наконец индийский исследователь установил, что имеется определенная аналогия между реакцией на свет у растений и у сетчатки глаз животных. Он доказал, что растения обнаруживают усталость точно так же, как и мышцы животных.

"Я теперь знаю, что у растений имеются дыхание без легких или жабер, пищеварение без желудка и движение без мышц, - подводит Бос итог своим исследованиям. - Теперь мне кажется правдоподобным, что у растений может иметь место и такого же рода возбуждение, какое встречается у высших животных, но без наличия сложной нервной системы..."

И он оказался прав: последующие исследования позволили выявить у растений нечто вроде "карикатуры на нервную клетку", по меткому выражению одного исследователя. Тем не менее этот упрощенный аналог нервной клетки животного или человека исправно выполнял свой долг - передавал импульс возбуждения от датчика к исполнительному органу. И листок, лепесток или тычинка приходят в движение...

Подробности механизма управления подобными движениями, пожалуй, лучше всего рассмотреть на опыте А.М.Синюхина и Е.А.Бритикова, изучавших распространение потенциала действия в двухлопастном рыльце цветка инкарвилии при возбуждении.

Если кончик одной из лопастей испытывает механическое прикосновение, то уже через 0,2 секунды возникает потенциал действия, распространяющийся к основанию лопасти со скоростью 1,8 см/с. Спустя секунду он достигает клеток, расположенных в месте сочленения лопастей и вызывает их реакцию. Лопасти приходят в движение через 0,1 секунды после прихода электрического сигнала, а еще 6-10 секунд длится сам процесс закрытия. Если растение больше не трогать, то через 20 минут лепестки снова полностью раскрываются.

Как оказалось, растение способно производить и куда более сложные действия, чем простое закрытие лепестков. Некоторые растения реагируют на определенные раздражения весьма специфическим образом. Например, стоит по цветку липы начать ползать пчеле или иному насекомому, и цветок тотчас начинает выделять нектар. Как будто понимает, что пчела заодно перенесет и пыльцу, а значит, будет способствовать продолжению рода.

Причем у некоторых растений при этом, говорят, даже повышается температура. Чем вам не приступ любовной лихорадки?

librolife.ru

Зачем растениям нужны нервные импульсы — Пси-Фактор

Подробнее разобраться в электрофизиологии растений помог профессор Оквудского университета Александр Волков.

Журналист: Я никогда не подумал бы, что кто-то занимается электрофизиологией растений, пока не наткнулся на ваши статьи.

Александр Волков: Вы не одиноки. Широкая публика привыкла воспринимать растения как еду или элементы ландшафта, даже не понимая, что они живые. Когда-то я делал в Хельсинки доклад по электрофизиологии растений, и тогда коллеги очень удивились: «Раньше занимался серьезной темой — несмешиваемыми жидкостями, а теперь какими-то фруктами, овощами». Но так было не всегда: первые книги по электрофизиологии растений были опубликованы еще в XVIII веке, и тогда изучение животных и растений шло почти параллельными путями. К примеру, Дарвин был уверен, что корень — это своеобразный мозг, химический компьютер, обрабатывающий сигналы со всего растения (см., например, «Способность к движению у растений»). А потом наступила Первая мировая война и все ресурсы были брошены на изучение электрофизиологии животных, потому что людям нужны были новые лекарства.

Ж: Это выглядит логичным: лабораторные мыши все-таки гораздо ближе к людям, чем фиалки.

А.В: В действительности различия между растениями и животными совсем не такие громадные, а в электрофизиологии они вообще минимальные. У растений есть почти полный аналог нейрона — проводящая ткань флоэма. У нее тот же самый состав, те же размеры и функции, что у нейронов. Единственное отличие, что у животных в нейронах для передачи потенциалов действия используются натриевый и калиевые ионные каналы, а в флоэме растений — хлоридный и калиевый. Вот и вся разница в нейрофизиологии. Немцы недавно нашли химические синапсы у растений, мы — электрические, и в целом у растений работают те же нейротрансмиттеры, что и у животных. Мне кажется, это даже логично: если бы я создавал мир, а я человек ленивый, я бы сделал все одинаковым, чтобы все было совместимо.

Дарвин считал корни растений своеобразным аналогом головного мозга. Фото: Ammak / Фотодом / Shutterstock

 

Зачем растениям нервные импульсы?

Мы не задумываемся об этом, но растения в своей жизни обрабатывают даже больше типов сигналов от внешней среды, чем люди или любые другие животные. Они реагируют на свет, тепло, гравитацию, солевой состав почвы, магнитное поле, различные патогены и гибко меняют свое поведение под действием полученной информации. К примеру, в лаборатории Стефано Манкузо (Stefano Mancuso) из Университета Флоренции проводили эксперименты с двумя вьющимися побегами фасоли. Ученые устанавливали между растениями общую опору, и побеги начинали наперегонки к ней тянуться. Но как только первое растение забиралось на опору, второе сразу будто признавало себя побежденным и переставало расти в этом направлении. Оно понимало, что борьба за ресурсы бессмысленна и лучше искать счастье где-нибудь в другом месте. 

Ж: Растения не двигаются, медленно растут и вообще живут неторопливо. Кажется, что нервные импульсы у них должны распространяться тоже гораздо медленнее.

Александр Волков: Это заблуждение, которое долго бытовало в науке. В 70-х годах XIX века англичане померили, что потенциал действия у венериной мухоловки распространяется со скоростью 20 сантиметров в секунду, но это была ошибка. Они были биологами и совершенно не владели техникой электроизмерений: в своих экспериментах англичане использовали медленные вольтметры, которые регистрировали нервные импульсы даже медленнее, чем они распространялись, что совершенно недопустимо. Теперь мы знаем, что нервные импульсы могут бежать по растениям с самыми разными скоростями в зависимости от места возбуждения сигнала и от его природы. Максимальная скорость распространения потенциалов действия у растений сравнима с такими же показателями у животных, а время релаксации после прохождения потенциала действия может меняться от миллисекунд до нескольких секунд.

Ж: Для чего растения используют эти нервные импульсы?

А.В: Хрестоматийный пример — это венерина мухоловка, о которой я уже упомянул. Эти растения живут в районах с очень влажной почвой, в которую плохо проникает воздух, и, соответственно, в этой почве мало азота. Недостаток этого необходимого вещества мухоловки добирают, поедая насекомых и маленьких лягушек, которых они ловят с помощью электрической ловушки — двух лепестков, в каждый из которых встроено по три пьезомеханических сенсора. Когда насекомое садится на любой из лепестков и задевает своей лапкой эти рецепторы, в них генерируется потенциал действия. Если насекомое задевает механосенсор дважды в течение 30 секунд, то ловушка захлопывается за доли секунды. Мы проверяли работу этой системы — прикладывали к ловушке венериной мухоловки искусственный электрический сигнал, и все работало точно так же — ловушка закрывалась. Потом мы повторили эти эксперименты с мимозой и другими растениями и так показали, что можно за счет электрических сигналов заставлять растения открываться, закрываться, двигаться, нагибаться — в общем, делать все что угодно. При этом внешние возбуждения разной природы генерируют у растений потенциалы действия, которые могут различаться амплитудой, скоростью и продолжительностью.

Ж: На что еще могут реагировать растения?

А.В: Если вы подстрижете травку у себя на даче, то в корни растений сразу пойдут потенциалы действия. По ним запустится экспрессия некоторых генов, и на порезах активируется синтез перекиси водорода, защищающей растения от инфекции. Точно так же если вы измените направление света, то первые 100 секунд растение никак не будет на это реагировать, для того чтобы отсечь вариант тени от птицы или животного, а потом снова пойдут электрические сигналы, по которым растение за секунды повернется таким образом, чтобы максимально захватить световой поток. Все то же самое будет, и когда вы станете капать кипящей водой, и когда поднесете горящую зажигалку, и когда опустите растение в лед — на любые раздражители растения реагируют с помощью электрических сигналов, которые управляют их ответами на изменившиеся условия внешней среды.

Венерина мухоловка ловит свою добычу с помощью нервных импульсов, возбуждаемых механосенсорами. Фото: Mark Freeth / Flickr

 

Память растений

Растения не только умеют реагировать на внешнюю среду и, по-видимому, просчитывать свои действия, но еще и завязывают между собой некоторые социальные отношения. Например, наблюдения немецкого лесничего Петера Воллебена показывают, что у деревьев бывает нечто вроде дружбы: деревья-партнеры переплетаются корнями и внимательно следят за тем, чтобы их кроны не мешали друг другу расти, в то время как случайные деревья, не питающие никаких особых чувств к своим соседям, всегда стараются захватить себе побольше жизненного пространства. При этом дружба может возникать и между деревьями разных видов. Так, в опытах того же Манкузо ученые наблюдали, как незадолго до смерти дугласия будто оставляет наследство: желтой сосне неподалеку от нее дерево посылало по корневой системе большое количество органических веществ.

Ж: У растений есть память?

Александр Волков: У растений есть все те же виды памяти, что и у животных. Например, мы показали, что памятью обладает венерина мухоловка: чтобы ловушка сработала, на нее нужно отправить 10 микрокулонов электричества, но, оказывается, это не обязательно делать за один сеанс. Можно сначала подать два микрокулона, потом еще пять и так далее. Когда в сумме наберется 10, растению покажется, что в него попало насекомое, и оно захлопнется. Единственное, что между сеансами нельзя делать перерывы больше, чем в 40 секунд, иначе счетчик обнулится — получается такая краткосрочная память. А долгосрочную память растений увидеть еще проще: например, у нас одной весной на 30 апреля ударили заморозки, и буквально за одну ночь на инжирном дереве померзли все цветы, а в следующем году оно уже не расцветало до первого мая, потому что помнило, чем это закончилось. Похожих наблюдений физиологами растений было сделано немало за последние 50 лет.

Ж: Где хранится память растений?

А.В: Однажды я встретил на конференции на Канарских островах Леона Чуа, который в свое время предсказал существование мемристоров — сопротивлений с памятью о прошедшем токе. Мы разговорились: Чуа почти ничего не знал о ионных каналах и электрофизиологии растений, я — о мемристорах. В результате он попросил, чтобы я попробовал поискать мемристоры in vivo, потому что по его расчетам они должны быть сопряжены с памятью, но до сих пор в живых существах их никто не находил. У нас же все получилось: мы показали, что потенциал-зависимые калиевые каналы алоэ вера, мимозы и той же венериной мухоловки — это по природе своей мемристоры, а в следующих работах мемристивные свойства нашли в яблоках, картофеле, семенах тыквы, разных цветах. Вполне возможно, что память растений завязана именно на этих мемристорах, но точно пока это неизвестно.

Ж: Растения умеют принимать решения, обладают памятью. Следующий шаг — социальные взаимодействия. Могут ли растения общаться друг с другом?

А.В: Знаете, в «Аватаре» есть такой эпизод, где деревья общаются между собой под землей. Это не фантазия, как можно подумать, а установленный факт. Когда я жил в СССР, мы часто ходили за грибами и все знали, что гриб надо аккуратно срезать ножичком, чтобы не повредить грибницу. Теперь выясняется, что грибница — это электрический кабель, по которому деревья могут общаться как между собой, так и с грибами. Более того, есть множество свидетельств, что по грибнице деревья обмениваются не только электрическими сигналами, но еще и химическими соединениями или даже опасными вирусами и бактериями.

Ж: А что вы скажете по поводу мифа о том, что растения понимают человеческую речь, и поэтому с ними надо говорить ласково и спокойно, чтобы они лучше росли?

А.В: Это только миф, больше ничего.

Ж: Можем ли мы применять к растениям термины «боль», «мысли», «сознание»?

А.В: Об этом я ничего не знаю. Это уже вопросы философии. Прошлым летом в Петербурге был симпозиум по сигналам в растениях, и туда приехало сразу несколько философов из разных стран, так что этой темой сейчас начинают заниматься. Но я привык говорить о том, что я могу экспериментально проверить или рассчитать.

В семенах тыквы ученые нашли аналоги мемристоров — резисторов, обладающих памятью. Фото: Shawn Campbell / Flickr

 

Растения как сенсоры

Растения умеют координировать свои действия с помощью разветвленных сетей. Так, акация, произрастающая в африканской саванне, не только выделяет в свои листья токсическое вещество, когда ее начинают есть жирафы, но еще и испускает летучий «тревожный газ», передающий сигнал бедствия окружающим растениям. В результате жирафам в поисках пищи приходится перемещаться не к ближайшим деревьям, а отходить от них в среднем на 350 метров. Сегодня ученые мечтают использовать подобные отлаженные природой сети живых сенсоров для экологического мониторинга и других задач.

Ж: Вы пробовали использовать ваши исследования по электрофизиологии растений на практике?

Александр Волков: У меня есть патенты по предсказанию и регистрации землетрясений с помощью растений. В преддверии землетрясений (в разных частях света временной интервал меняется от двух до семи суток) движение земной коры вызывает характерные электромагнитные поля. В свое время японцы предлагали их фиксировать с помощью гигантских антенн — железок высотой два километра, но никто такие антенны так и не смог построить, да это и не нужно. Растения настолько чувствительны к электромагнитным полям, что могут предсказывать землетрясения лучше любых антенн. Например, мы использовали для этих целей алоэ веру — подключали к ее листьями хлорсеребряные электроды, снимали электрическую активность, обрабатывали данные.

Ж: Звучит абсолютно фантастически. Почему эта система до сих пор не внедрена в практику?

А.В: Здесь возникла неожиданная проблема. Смотрите: допустим, вы мэр Сан-Франциско и узнаете, что через два дня будет землетрясение. Что вы будете делать? Если вы сообщите об этом людям, то в результате паники и давки может погибнуть или получить травмы даже больше людей, чем при землетрясении. Из-за таких ограничений я даже публично в открытой печати не могу обсуждать результаты наших работ. В любом случае, я думаю, рано или поздно у нас будут самые разные системы мониторинга, работающие на растениях-сенсорах. Например, мы в одной своей работе показали, что с помощью анализа электрофизиологических сигналов можно создать систему мгновенной диагностики различных заболеваний сельскохозяйственных растений.

Ученые предлагают предсказывать землетрясения по электрическим сигналам в листьях алоэ вера. Фото: rabiem22 / Flickr

Михаил Петров

Источник

psifactor.info

Почему нервные ткани есть только у животных, а у растений её нет?

Растения обладают раздражимостью (т. к. это один из признаков живого) . А ответ очень прост, у растений нету мозга и поэтому им не нужен переносинформации, а у животны есть головной мозг и по нервной ткани происходит перенос сигналов в мозг.

Разум цветов <br> <br>В 1991 г. немецкие ученые Эрвин Неер и Берт Закман были удостоены Нобелевской премии по физиологии и медицине. Премию они получили за разработку тончайшей техники электродного исследования клеток. Благодаря их методу в мембранах растительных и животных клеток удалось обнаружить каналы, по которым движутся ионы кальция и натрия, перенося по организму сигналы, закодированные в изменениях электрического напряжения.<br>

Видимо функция раздражимости растениям не к чему.. сидишь себе в земле и растешь.. эволюция

Не доказано! они просто говорить не умеют.

и у растений они есть, давно доказано опытами, что растения могут испытывать страх, когда их хотят срезать, радость от близости хозяина ( у хорошего хозяина цветы хорошо растут и цветут), печаль, когда их отдают в чужие руки и т.д.даже камни могут грустить-пример тому бирюза, которая меняет свой цвет

Растениям свойственна элементарная чувствительность, в осуществлении которой важную роль играет ==электрический тип сигнализации==. По общим признакам он очень напоминает электрические процессы в нерве во время распространения нервного импульса. <br> <br>у растений, хотя и отсутствуют специальные образования (наподобие <br>нервов), в проводящих пучках имеются особые ткани, выполняющие эту функцию. растении так же как и в нерве, возникают ионные потоки только вместо ионов натрия в качестве деполяризующего иона у высших растений выступают ионы хлора. <br> <br>у растений нет центральной нервной системы - «диспетчерской», откуда управляющие сигналы после поступления туда информации о внешнем раздражителе <br>направляются к различным органам. У растений нервный импульс сам несет в себе <br>возможность непосредственно влиять на функции органов и тканей, по которым он распространяется. <br> <br>у растений обычно в ответ на действие раздражителя генерируются одиночные импульсы (в отличие от животных, у которых возникают ритмически повторяющиеся). можно <br>заключить, что у высших растений распространяющиеся импульсы не имеют <br>специфической информационной нагрузки, а являются скорее сигналом о каком-то внешнем воздействии. в тканях и органах наряду с общими неспецифическими явлениями он вызывает изменение некоторых специфических процессов, свойственных данному органу (например, в <br>листьях изменение фотосинтеза, в корнях усиление поглощения веществ и <br>т.д.). пример = при попадании пыльцы на рыльце пестика в нем возникают <br>многочисленные электрические импульсы, распространяющиеся по направлению к <br>завязи. Это запускает цикл процессов, подготавливающих завязь к восприятию <br>пыльцы и оплодотворению. <br><br>

touch.otvet.mail.ru

Есть ли мозг у насекомых?

Нервная система у насекомых построена сходно с нервной системой низших членистоногих и даже кольчатых червей: есть головной мозг — надглоточные скопления нервных клеток — и брюшная нервная цепочка. Большого развития и усложнения достигает у насекомых головной мозг. Брюшная же цепочка состоит из подглоточного узла и обычно 10 грудных и брюшных ганглиев, причем соседние ганглии брюшной цепочки часто сближаются и полностью сливаются друг с другом. В головном мозге, всегда представляющем слитное образование, различают 3 части: «первичный» мозг, обычно самый большой отдел, связанный с органами зрения, «вторичный» , связанный с усиками, и «третичный» , дающий ветви к верхней губе и передней части кишечника. В мозге развиты в основном ассоциативные клетки, к которым подходят нервы от органов чувств. В центре «первичного» мозга есть «грибовидные тела» , состоящие из скоплений ассоциативных клеток. Чем сложнее поведение насекомого, тем сильнее у него развит головной мозг. У пчелы он составляет 1/174 объема тела, а у жука-плавунца всего 1/420. У маленькой пчелы мозг даже абсолютно больше, чем у крупного жука-оленя. <img src="//content.foto.my.mail.ru/mail/razzzorvanka/_answers/i-56.jpg" > Вот, например, у мухи.. . Американские ученые из университета Yale научились управлять фруктовыми мухами при помощи лазера. Направленные лазерные импульсы создавали симуляцию нейронных импульсов, подобных тем, которые генерирует мозг мухи. Это позволило на расстоянии управлять ими. Но на этом эксперимент не закончился. Как известно - насекомые очень живучие создания, соответственно нескольким мухам были аккуратно удалены головы. Затем начали подаваться лазерные импульсы и мухи выполняли команды, которые им давались лазером и летали без голов. Во первых такой дерзкий эксперимент доказал то, что у мух мозг очень прост :-), во вторых это вносит опасения того, что в будущем могут появиться устройства по внешнему контролю человеческого сознания. Видеоролик с поведением безголовых мух можно увидеть по этому адресу. <a rel="nofollow" href="http://download.cell.com/supplementaryda" target="_blank">http://download.cell.com/supplementaryda</a> У насекомых нервная система ганглионарная, т. е. состоящая из ганглиев (нервных узлов) соединённых стволами, тяжами и т. п. Три передних ганглия так тесно связаны друг с другом, что их выделяют в отдельный надглоточный ганглий, называемый также головным мозгом, в котором выделяют три раздела - протоцеребрум, дейтроцеребрум и тритоцеребрум. Головной мозг насекомого играет координирующую роль при определении поведения насекомого, однако рефлекторные действия определяются рефлекторной дугой - рецептор, ближайший ганглий, эффектор, т. е. не вовлекают в процесс головной мозг (как, впрочем, и у высших животных) . Поведение насекомых во многом заложено генетически, т. е. является инстинктивным, однако, как показывают эксперименты, влияние прижизненного опыта на поведение наблюдается даже у простейших (именно так - даже у одноклеточных) . У насекомых такое влияние тоже есть, наиболее развита обучаемость у общественных насекомых (пчёлы, муравьи, термиты) . Для других насекомых коммуникации служат исключительно для привлечения партнёров для размножения, т. е. не несут функции передачи опыта. Итого вкратце: мозг у мухи есть, её действия как правило инстинктивны, но возможна прижизненная обучаемость, полученный опыт умрёт вместе с мухой. Про пчёл: <a rel="nofollow" href="http://fio.novgorod.ru/projects/Project2" target="_blank">http://fio.novgorod.ru/projects/Project2</a>...

должен быть по идее...

а куда ему деться? некоторые муравьи например поумнее человека будут

Мозгов нет. Есть инстинкты.

в школе на уроки биологии надо было ходить!

U nih net mozga, oni sleduut svoemu instinktu.

Мозга нет, но есть нервная система узлового типа.

Только инстинкты, точнее тропизмы

Только инстинкт и наследственная память. Но если особь сделает какое-то полезное действие случайно, то потомки также получают это умение по наследству. Вот бы и мы так могли .

Нервный центр есть. Мозга в обычном смысле - нет. Т. е. у них как бы один "спинной мозг"

нету. насколько помню с биологии, то первый головной мозг появляется у рыб

touch.otvet.mail.ru


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта