Для направленного роста растений в космосе предполагается применять. Контрольная работа: 5 вариант. 5. Для направленного роста растений в космосе предполагается применять вращающиеся оранжереи. Вычислить частоту вращения оранжереи, необходимую для получения центробежной силы на расстоянии от оси вращения. 44. Маховик с моментом инерции 60 кг·м² начинает вращаться под действием момента силы 120 Н · м. Определить угловую скорость, которую маховик будет иметь через 5 с. 46. Точка совершает гармонические колебания, описываемые уравнением ( в метрах). Определить ускорение через 2/3 с после начала колебаний. 58. Определить плотность углекислого газа при 117°С

Детский сад № 4 "Золотая рыбка"

город Карпинск Свердловской области

 

Направленные светодиоды позволят вырастить растений в космосе почти без затрат. Для направленного роста растений в космосе предполагается применять


Контрольная работа 1

Таблица вариантов

Последняя

цифра шифра

Предпоследняя цифра шифра

нечетная

четная

0

1

2

3

4

5

6

7

8

9

1 21 41 61 81 101 121 141

3 23 43 63 83 103 123 143

5 25 45 65 85 105 125 145

7 27 47 67 87 107 127 147

9 29 49 69 89 109 129 149

11.31 51 71 91 111 131 151

13 33 53 73 93 113 133 153

15 35 55 75 95 115 135 155

17 37 57 77 97 117 137 157

19 39 59 79 99 119 139 159

2 22 42 62 82 102 122 142

4 24 44 64 84 104 124 144

6 26 46 66 86 106 126 146

8 28 48 68 88 108 128 148

10 30 50 70 90 110 130 150

12 32 52 72 92 112 132 152

14 34 54 74 94 114 134 154

16 36 56 76 96 116 136 156

18 38 58 78 98 118 138 158

20 40 60 80 100 120 140 160

1.Для направленного роста растений в космосе предполагается применять вращающиеся оранжереи. Вычислить частоту и период вращения оранжереи, необходимые для получения центробежной силы инерции F=0,3mg, на расстоянии R=25 м от оси.

2.Чему равна линейная скорость на ободе турбины диаметром d=9 м, если частота вращения п =1,2 с-1? На каком расстоянии от оси линейная скорость равна ύ =15 м/с?

3.Трос подъемного устройства выдерживает силу натяжения F=8,5 кН. Определить массу груза, которую он может поднять с ускорением а=2,45 м/с2.

4.Два тела массами m1=100 г и m2=150 г висят на нити, перекинутой через блок. Определить скорости тела через время t=1 с.

5.Определить массу прицепа, который трактор ведет с ускорением а=0,2 м/с2. Сила сопротивления движению Fтр=1,5 кН, сила тяги на крюке трактора F=1,6 кН.

6.К концам нити, перекинутой через блок, подвешены два тела массами m1=200 г и m2=150 г. Определить, за какое время t тела пройдут расстояние s=1 м.

7 К саням массой m=350 кг приложена сила F=500 Н. Определить коэффициент трения саней о лед, если сани движутся с ускорением а=0,8 м/с2.

8.Под углом а=450 к стенке движется шар массой m=0,2кг. Скорость шара ύ =2,5 м/с. Определите импульс, полученный стенкой при упругом взаимодействии.

9.Шар массой m200 г движется перпендикулярно стене со скоростью ύ1=5 м/с и отскакивает от нее со скоростью ύ2=3 м/с. Определить силу взаимодействия шара со стеной, если время взаимодействия t=0,1 с.

10.Шарик массой m=200 г упал с высоты h=4,9 м на массивную горизонтальную плиту и отскочил вверх. Определить импульс, полученный плитой. Считать удар упругим.

11.Вычислить ускорение свободного падения, создаваемого Солнцем вблизи Земли. Масса Солнца равна m=2·1030 кг, расстояние от Солнца до Земли равно R=149,6·106 км.

12.Определить период обращения спутника Земли, движущегося на высоте h=104 км. Радиус Земли R=6370 км, масса Земли m=5,98·1024 кг.

13.Вычислить, на какой высоте от поверхности Земли сила тяжести уменьшится вдвое. Радиус Земли R=6370 rv/

14.Первая космическая скорость спутника Земли равна ύ =7,9 км/с. Вычислить первую космическую скорость спутника Луны, если ее масса в 81,6 раза меньше земной, а радиус Луны в 3,68 раза меньше радиуса Земли.

15.Ускорение свободного падения на Луне равно а=1,61 м/с2, радиус Луны R=1740 км. Определить массу Луны.

16.Определить силу притяжения между Луной и Землей. Масса Земли m3=5,98·1024 кг, Луны mл=7,33·1022 кг, расстояние от Земли до Луны R=3,84·108 м.

17.Автомобиль массой m=1,5 т движется по выпуклому мосту со скоростью ύ =30 м/с. Определить силу давления на мост в верхней его части, если радиус кривизны моста равен R=250 м.

18.Автомобиль массой m=1 т, движущийся со скоростью ύ =54 км/ч, останавливается за t=6 с. Вычислить тормозной путь и силу торможения.

19.С тележки, движущейся со скоростью ύ =2 м/с, прыгает человек массой m1=80 кг. После этого скорость тележки уменьшилась вдвое. Вычислить горизонтальную составляющую скорости человека при прыжке, если масса тележки m2=200 кг.

20.Линейная скорость точек на экваторе вследствие вращения Земли вокруг оси равна ύ=464 М/С. Определить, на сколько процентов уменьшается вес тела на экваторе по сравнению с весом на широте Москвы. Радиус Земли принять равным R==6370 км, ускорение свободного падения на широте Москвы g=9,816 м/с2.

21.Снаряд, летевшей со скоростью ύ2=300 м/с, разорвался на два осколка. После взрыва больший осколок имел скорость ύ1=400 м/с. Направление движения осколков не изменилось. Определить отношение масс осколков.

22.Шар массой m1 =2 кг, движущийся со скоростью ύ=1,2 м/с, налетает на покоящийся шар массой m2=1,5 кг. Вычислить скорости шаров после упругого взаимодействия.

23. Тело массой m2 кг движется со скоростью ύ1=3 м/с. Какую работу надо выполнить, чтобы увеличить скорость тела до ύ2=4 м/с? Вычислить работу, которую надо совершить, чтобы скорость увеличилась от ύ1=4 м/с до ύ2=5 м/с.

24.Под действием некоторой постоянной силы груз массой m=10 кг подняли вертикально на высоту h=2 м. При этом совершена работа А=300 Дж. С каким ускорением поднимали груз?

25.Камень массой m=1,5 кг упал с некоторой высоты. Падение продолжалось t=1,2 с. Определить кинетическую энергию камня в средней точке пути.

26.Тело массой m=0,5 кг падает с некоторой высоты на плиту массой m1=1 кг, укреплению на пружине жесткостью k=4 кН/М. Определить, на какую длину сожмется пружина, если в момент удара скорость груза ύ=5м/с. Удар считать неупругим.

27. Груз массой m=5 кг падает с высоты h=5 м и проникает в грунт на расстояние l=5 см. Определить среднюю силу сопротивления грунта.

28.Для подъема зерна на высоту h=10 м установили транспортер мощностью N=4 кВт. Определить массу зерна, поднятого за время t=8 ч работы транспортера. Коэффициент полезного действия установки принять равным η=13,6%.

29.Совершив работу, равную А1=20 Дж, удается сжать пружину на 2 см. Определить работу, которую надо выполнить, чтобы сжать пружину на 4 см.

30.Диск массой m=5 кг вращается с частотой п1=с-1. Определить работу, которую надо совершить, чтобы частота вращения диска увеличилась до п2=15 с-1. Радиус диска равен R=20 см.

31.Определить мощность электродвигателя, если его якорь вращается с частотой п=25 с-1, а момент силы равен М=14 Н·м.

32.Вычислить, какая энергия выделится, если период вращения земли увеличится вдвое. Масса Земли m=5,98·1024 кг, радиус R=6370 км.

33.Горизонтальная платформа массой m1=120 кг вращается с частотой п=6 об/мин. Человек массой m2=80 кг стоит на краю платформы. С какой частотой начнет вращаться платформа, если человек перейдет в ее центр? Платформу принять за однородный диск.

34.Диск радиусом R=30 cм и массой m=10 кг вращается с частотой п =5 с-1. Какой момент силы следует приложить, чтобы диск остановился за время t=10 с?

35.Маховик с моментом инерции Ĵ=45 кг·м2 начинает вращаться, и за время t=5 с его угловая скорость возрастает до ω=62,8 рад/с. Определить момент силы, действующей на маховик.

36.Однородный стержень может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В верхнем положении угловая скорость стержня ω=6,28 рад/с. Определить угловую скорость стержня внизу. Длина стержня l=40 cм.

37.Снаряд массой m=20 кг имеет вид цилиндра радиусом R=5 cм. Снаряд летит со скоростью ύ=300 м/с и вращается вокруг оси с частотой п=200 с-1. Вычислить кинетическую энергию снаряда.

38.Тело, имеющее момент инерции Ј=50 кг·м2, вращается с частотой п=10 с-1. Какой момент силы следует приложить, чтобы частота вращения увеличилась вдвое за время t=20 с ?

39.Маховик с моментом инерции Ј=60 кг·м2 начинает вращаться под действием момента силы М=120 Н·м. Определить угловую скорость, которую маховик будет иметь через время t=5 c.

40.Молотильный барабан вращается с частотой п=20с-1. Момент инерции барабана Ј=30 кг·м2. Определить момент силы, под действием которого барабан остановится за время t=200 c.

41. Частота колебаний пружинного маятника равна п=3 с-1. Определить жесткость пружины, если масса маятника m=300 г.

42.Точка совершает гармонические колебания, описываемые уравнением х =0,05 sin 4πt. Определить ускорение через время t=2/3 c после начала колебаний.

43.Тело массой m=160 г подвешено на пружине жесткостью k=9,87 Н/м. Определить период колебаний.

44.Частота колебаний струны v=200 Гц, амплитуда колебаний А=5·10-3 м. Определить максимальную скорость струны.

45.Тело совершает гармонические колебания. Период колебаний Т=0,15 с, максимальная скорость ύ=8 м/с. Определить амплитуду колебаний.

46.Максимальная скорость колебаний точки равна ύmax=10 м/с, амплитуда колебаний А=2·10-3 м. Определить максимальное ускорение точки.

47.Максимальное ускорение колеблющегося тела amax=10 3 м/с2, амплитуда колебаний А=10 см. Определить частоту колебаний тела.

48.Период колебаний волн Т=3·10-2 с, скорость распространения ύ=332 м/с. Определить длину волны.

49.Частота колебаний волн v=200 Гц, длина волны λ=1,66 м. Определить скорость распространения волн.

50.Волна описывается уравнением х=0,1sinπ(t-у/10). Определить смещение точек среды для времени t=5 c у= 40 м.

51.Волна описывается уравнением х=0,005 sin 2π(t-у/10).

52.Волна описывается уравнением х=Аsinω(t-у/ύ), где А=0,03 м, круговая частота ω=π(с-1), скорость волны ύ=5м/с. определить смещение частиц среды через время t=2,5 с на расстоянии у=10 м от источника колебаний.

53.Определить массу молекулы аммиака Nh4.

54.Определить плотность углекислого газа при температуре t=1170С и давлении р=202 кПа.

55.Сколько молекул газа содержится при нормальных условиях в колбе вместимостью V=0,5 л?

56.Сколько молекул содержится в кислороде массой m=2 г?

57.Определить число молекул воздуха у поверхности Земли при нормальных условиях в объемах: 1) V=1 м3; 2) V=1 см3 (число Лошмидта).

58.Определить давление воздуха при температуре t=2270С, если его плотность р=0,9 кг/м3

59.В закрытом баллоне находится газ при нормальном атмосферном давлении и температуре t1=270С. Каково будет давление газа, если его нагреть до температуры t2=770CЕ.

60.До какой температуры нужно нагреть газ, чтобы при неизмененном давлении объем газа удвоился? Начальная температура газа t=270C.

61.Определить объем баллона, в котором находится кислород массой m=4,3 кг под давлением р=15,2 Мпа при температуре t=270С.

62.Баллон вместимостью V=50 л наполнен кислородом. Определить массу кислорода, находящегося в баллоне при температуре t=470С и давлении р=0,11 Мпа.

63.Определить температуру водорода, имеющего плотность р=6 кг/м3 при давлении р=12,1 Мпа.

64.Определить давление газа с количеством вещества v=2 моль, занимающего объем V=6 л температуре t==-380С.

65.Для сварки израсходован кислород массой m=3,2 кг. Какой должна быть минимальная вместимость сосуда с кислородом, если стенки сосуда рассчитаны на давление р=15,2 Мпа? Температура газа в сосуде t=170C.

66.В баллон накачали водород, создав при температуре t=60С давление р=7,73 Мпа. Определить плотность газа в баллоне.

67.Определить плотность водорода, создающего при температуре t=270С давление р=24,5 Мпа.

68.Определить молярную массу газа у которого при температуре t=580C и давлении р= 0,25 Мпа плотность р=4 кг/м3.

69.Определить плотность воздуха при температуре t=3070С и давлении Р=98,1 кПа.

70.Для сварки был применен газ, находящийся в баллоне вместимостью V=25 л при температуре t1=270С и давлении р1=20,2 Мпа. Определить массу израсходованного газа, если давление газа в баллоне стало р2=4,04 Мпа, а температура t2=230C. Относительная молекулярная масса газа Мr=26.

71.Определить количество вещества ύ газа, занимающего объем V=2 см3 при температуре Т=241 К и давлении р=1 Гпа.

72.Какой газ при давлении р=0,808 Мпа и температуре Т=240 К имеет плотность р=0,81 кг/м3?

73.Относительная молекулярная масса газа Mr=17, отношение теплоемкостей Cp/CV=1,33. Вычислить по этим данным удельные теплоемкости cp и сv.

74.Определить теплоту Q, необходимую для нагревания азота массой m=10 г на ∆Т=20 К: 1)при постоянном давлении; 2) при постоянном объеме. Результаты сравнить.

75.При каких условиях нагревали водород массой m=20 г, если повышении его температуры на ∆Т=10 К потребовалась теплота Q=2,08 кДж?

76. Определить энергию вращательного движения молекулы кислорода при температуре t=-1730C

77.Вычислить энергию вращательного движения всех молекул водяного пара массой m=36 г при температуре t=200С.

78.Опреределить полную кинетическую энергию молекул углекислого газа массой m=44 г при температуре t=270С.

79.Определить полную кинетическую энергию молекул, содержащихся в 1 кмоль азота при температуре t=70С.

80.Вычислить среднюю энергию поступательного движения всех молекул азота при температуре t=1370С.

81.Определить энергию поступательного движения молекул водяного пара массой m=18 г при температуре t=160С.

82.Определить, во сколько раз показатель адиабаты для гелия больше, чем для углекислого газа.

83.Определить изменение внутренней энергии водяного пара массой m=100 г при повышении его температуры на ΔТ=20 К при постоянном объеме.

84.Для нагревания водорода массой m=20г при постоянном давлении затрачена теплота Q=2,94 кДж. Как изменится температура газа?

85.Определить удельную теплоемкость газа при постоянном давлении, если известно, что относительная молекулярная масса газа Мr=30, отношение теплоемкостей Ср/Сv=1,4.

86.Во сколько раз средняя квадратичная скорость молекул водорода больше скорости молекул кислорода при этой же температуре?

87.Определить среднюю длину свободного пробега молекул водорода при температуре t=270С и давлении р=4 мкПа. Принять диаметр молекулы водорода d=2,3·10-8 см.

88.Определить среднюю частоту соударений молекул воздуха при температуре t=170С и давлении р=101 кПа. Эффективный диаметр молекулы воздуха принять равным d=0,35 нм.

89.В баллоне с углекислым газом давление р=5,06 мПа. При температуре t=270C среднее число соударений молекул ‹z›=1,65·1011 с-1. Определить эффективный диаметр молекулы углекислого газа.

90.Известно, что основными компонентами сухого воздуха являются азот и кислород. Во сколько раз средняя скорость молекулы азота отличается от средней скорости молекулы кислорода?

91.Определить градиент плотности углекислого газа в почве, если через площадь S=1м2 ее поверхности за время t=1 с в атмосферу прошел газ массой m=8·10-8 кг. Коэффициент дифуззии D=0,04 см2/с.

92.Определить толщину слоя суглинистой почвы, если за время ΐ=5 ч через площадь поверхности S=1 м2 проходит почвыв t1=250C, в нижнем слое почвы t2=150С.

93.Сколько теплоты пройдет через площадь поверхности S=1м2 песка за время ΐ=1ч, если температура на его поверхности t1=200C, а на глубине ∆х=0,5м –t2=100 C?

94.Определить массу газа, продиффундировавшего за время =12ч через поверхность почвы площадью S=10 см2, если коэффициент диффузии D=0,05 см2/с. Плотность газа на глубине ∆х=0,5 м равна р1=1,2∙10-2 г/см3, а у поверхности р2=1,0Х10-2 г/см3.

95.При изотермическом расширении водорода массой m=1г при температуре t=70С объем газа увеличился в три раза. Определить работу расширения.

96.Пары ртути массой m=200 г нагреваются при постоянном давлении. При этом температура возросла на ∆Т=100 К. Определить увеличение внутренней энергии паров и работу расширения. Молекулы паров ртути одноатомные.

97.Воздух, занимавший объем V1=10л при нормальном атмосферном давлении, был адиабатно сжат до объема V2=1л. Определить давление газа после сжатия.

98.При адиабатном расширении углекислого газа с количеством вещества ν=2 моль его температура понизилась на ∆t=200С. Какую работу совершил газ?

99.Совершил цикл Карно, газ получил от нагревателя теплоту Q1=1 кДж. Сколько теплоты было отдано охладителю, если КПД идеальной тепловой машины 25%?

100.Газ совершает цикл Карно. Термодинамическая температура Т1 нагревателя в два раза выше температуры Т2охладителя. Определить КПД такого цикла.

101.Объем паров углекислого газа при адиабатном сжатии уменьшился в два раза. Как изменилось давление?

102.Определить работу адиабатного сжатия паров углекислого газа массой m=110 г, если при сжатии температура газа повысилась на ∆Т=10 К.

103.При адиабатном расширения гелия, взятого при температуре t=00С, объем увеличился в три раза. Определить температуру газа после расширения.

104.Определить поверхностное натяжение касторового масла, если в трубке радиусом R=0,5 мм оно поднялось на h=14мм. Смачивание считать полным.

105.Определить средний диаметр капилляра почвы, если вода поднимается в ней на h=49 мм. Смачивание стенок считать полным.

106.Глицерин в капиллярной трубке диаметром d=1 мм поднялся на высоту h=20 мм. Определить коэффициент поверхностного натяжения глицерина. Смачивание считать полным.

107.Определить высоту поднятия воды в стеблях растений с внутренним диаметром d=0,4 мм под действием капиллярных сил. Смачивание стенок считать полным.

108.Двум шарикам одного размера и равной массы m=30 мг сообщили по равному одноименному заряду. Какой заряд был сообщен каждому шарику, если сила взаимного отталкивания зарядов уравновесила силу взаимного притяжения шариков по закону тяготения Ньютона? Шарики рассматривать как материальные точки.

109.На шелковой нити подвешен маленький шарик массой m=0,1 г, несущий на себе заряд Q. Если на расстоянии r=7 см ниже шарика поместить такой же заряд, то сила натяжения уменьшится в два раза. Найти заряд шарика.

110.Сила F взаимодействия между двумя точечными зарядами Q1=2 нКл, Q2=1 НКл, расположенными в воде, равна 0,5 мН. На каком расстоянии находятся заряды?

111.Два разноименных точечных заряда притягиваются в вакууме на расстоянии r=10 см с такой же силой, как и в керосине. Определить, на каком расстоянии располагаются заряды в керосине.

112.На шелковой нити в воздухе подвешен шарик массой m=100 мг. Шарику сообщен заряд Q1=2 нКл. На каком расстоянии от него следует поместить снизу Q2=-Q1, чтобы сила натяжения нити увеличилась в два раза?

113.Два точечных заряда Q1=10 нКл и Q2=-8 нКл расположены на расстоянии r=20 см друг от друга. Найти силу, действующую на заряд Q=2 нКл, расположенный посередине между зарядами Q1 и Q2..

114.Расстояние r между зарядами Q1=100 нКл и Q2=50 нКл равно 10 см. Определить силу F, действующую на заряд Q3=1 нКл, отстоящий на r1=8 см от заряда Q1 и на r2=6 см от заряда Q2.

115.На каком расстоянии друг от друга следует поместить два одноименных точечных заряда в воде, чтобы они отталкивались с такой же силой, с какой эти заряды отталкиваются в вакууме на расстояние r=9 см?

116.Электрон влетел в однородное поле с напряженностью Е=20 кВ/м в направлении его силовых линий. Начальная скорость электрона ύ0=1,2 Мм/с. Найти ускорение, приобретаемое электроном в поле, и скорость через время t=0,1 нс.

117.Два точечных заряда Q1=1,6 нКл и Q2=0,4 нКл расположены на расстоянии r=12 см один от другого. Где надо поместить третий положительный заряд Q3, чтобы он оказался в равновесии?

118.Поле, созданное точечным зарядом Q3=30 нКл, действует на заряд Q2=1 нКл, помещенный в некоторой точке поля, с силой F=0,2 мН. Найти напряженность и потенциал в этой точке, а также расстояние ее от заряда Q1.

119.Два заряда Q1=1 нКл и Q2=-3 нКл находятся на расстоянии r=20 см друг от друга. Найти напряженность и потенциал в точке поля, расположенной на продолжении линии, соединяющей заряды на расстоянии r110 см от первого заряда.

120.Два заряда Q1=-1 нКл находятся на расстоянии d=20 см один от другого. Найти напряженность и потенциал поля, созданного этими зарядами, в точке, расположенной между зарядами на линии, соединяющей заряды на расстоянии r=15 см от первого из них.

121.На заряд Q1=1 нКл, находящийся в поле точечного заряда Q на расстоянии r=10 см от него, поле действует с силой F=3 мкН. Определить напряженность и потенциал в точке, где находится заряд Q. Найти также значение заряда Q.

122.Два заряда Q1=-1 нКл и Q2=-30 нКл расположены на расстоянии r=25 см друг от друга. Вычислить напряженность поля в точке, лежащей посередине между зарядами.

123.Два заряда Q1=30 нКл и Q2=-30 нКл расположены на расстоянии r=25 см друг от друга. Найти напряженность и потенциал в точке, лежащей на прямой, соединяющей заряды, на расстоянии r1=5 см от первого заряда.

124.Электрическое поле создано двумя точечными зарядами: Q1=50 нКл, Q2=100нКЛ. Расстояние между зарядами r=10 см. Где и на каком расстоянии от первого заряда находится точка, в которой напряженность поля равна нулю?

125.Расстояние между двумя точечными зарядами Q=1 нКл и Q2=-30 нКл равно r=20 см. Найти напряженность и потенциал в точке, лежащей посередине между зарядами.

126.Какую разность потенциалов должен пройти электрон, чтобы приобрести скорость ύ=20 Мм/с?

127.Два заряда Q1=-10 нКл и Q2=20 нКл расположены на расстоянии r=20 см друг от друга. Найти напряженность и потенциал в точке, лежащей посередине между зарядами.

128.Электрон, начальная скорость которого ύ0=1 Мм/с, влетел в однородное электрическое поле с напряженностью Е=100 В/м так, что начальная скорость электрона противоположна напряженности поля. Найти энергию электрона через время t=10 нс.

129.Заряд Q=1 нКл перемещается под действием сил поля из одной точки поля в другую, при этом совершается работа А=0,2 мкДж. Определить разность потенциалов этих точек поля.

130.Два точечных заряда Q1=1 мкКл и Q2=2 мкКл находятся на расстоянии r2=20 см?

131.Точечный заряд Q создает в точке, находящейся на расстоянии r=10 см от заряда, поле с напряженностью Е=1 кВ/м. Найти потенциал поля в этой точке и силу, действующую на заряд Q1=2 нКл, помещенный в эту точку поля.

132.Заряд Q=10 нКл создает электрическое поле. Какую работу совершат силы этого поля, если оно переместит заряд Q1=1 нКл вдоль силовой линии из точки, находящейся от заряда на расстоянии r1=8 см, до расстояния r2=1 м?

133.Поле создано точечным зарядом Q. В точке, отстоящей от заряда на расстоянии r=30 см, напряженность поля Е=2 кВ/м. Определить потенциал φ в этой точке и заряд Q.

134.Расстояние между двумя точечными зарядами Q1=10 нКл и Q2=3 нКл равно 30 см. Определить работу, которую надо совершить, чтобы сблизить заряды до расстояния r=10 см.

135.В поле точечного заряда из точки, отстоящей на расстоянии r1=5 см от этого заряда, движется вдоль силовой линии заряд Q=1 мкКл. Определить заряд Q, если при перемещении заряда на расстояние r2=5 см полем совершена работа А=1,8 мДж.

136.Плоский воздушный конденсатор с площадью поверхности пластин S=100 см2 и расстоянием между ними d=2 мм заряжен до разности потенциалов U=400 В. Найти энергию поля конденсатора.

137.Заряженная капелька жидкости массой m=0,01 г находится в равновесии в поле горизонтально расположенного плоского конденсатора. Расстояние между пластинами конденсатора d=4 мм, разность потенциалов между ними U=200 В. Определить заряд капельки.

138.Заряженная частица с начальной скоростью, равной нулю, пройдя некоторую разность потенциалов, приобрела скорость ύ=2 Мм/с. Какую разность потенциалов прошла частица, если удельный заряд ее (отношение заряда к массе) Q/m=47 МКл/кг?

139.Заряженная частица, удельный заряд которой Q/m=47 МКл/кг, прошла разность потенциалов U=50 КВ. Какую скорость приобрела частица, если начальная скорость ее ύ0=0?

140.Между пластинами плоского конденсатора находится плотно прилегающая к ним эбонитовая пластинка. Конденсатор заряжен до разности потенциаловU=60 В. Какой будет разность потенциалов, если вытащить эбонитовую пластинку из конденсатора?

141.Разность потенциалов между пластинами плоского конденсатора U=120 В. Площадь каждой пластины S=100 см2, расстояние между пластинами находится воздух.

142.Плоский конденсатор с расстоянием между пластинами d=0,5 см заряжен до разности потенциалов U=300 В. Определить объемную плотность энергии ω поля конденсатора, если диэлектрик-слюда.

143.Плоский конденсатор, расстояние между пластинами которого d=2 мм, заряжен до разности потенциалов U=200 В. Диэлектрик-фарфор. Найти напряженность и объемную плотность энергии поля конденсатора.

144.Конденсатору,емкость которого С=0.5мкФ, сообщен заряд Q=3нКл.Определить энергию поля конденсатора.

145.Три резистора сопротивления которых r1=12 Ом, r2=4 Ом, r3=10Ом, соединены параллельно. Общая сила тока в цепи I=1 А. Найти силу тока, идущего через сопротивление r3.

146.Разность потенциалов на пластинах плоского конденсатора U=300 В. Площадь каждой пластины S=100 cм2 и заряд Q=10 нКл. Определить расстояние между пластинами.

147.Источник тока, ЭДС которого Е=1,5 В, дает во внешнюю цепь силу тока I=1 А. Внутреннее сопротивление источника тока r=0,2 Ом. Определить коэффициент полезного действия источника тока.

148.Два источника тока, ЭДС которых Е1=1,6 В Е2= В, а внутреннее сопротивление r1=0,3 Ом и r2=0,2 Ом, соединены последовательно и дают во внешнюю цепь силу тока I=0,4 А. Определить сопротивление внешней цепи.

149.Через графитовый проводник в форме параллелепипеда длиной l=3 см и площадью поперечного сечения S=30 мм2 идет ток I=5 А. Найти падение напряжения на концах графитового проводника.

150.Два элемента с одинаковыми ЭДС Е=1,6 В и внутренними сопротивлениями r1=0,2 Ом и r2=0,8 Ом соединены параллельно и включены во внешнюю цепь, сопротивление которой R=0,64 Ом. Найти силу тока в цепи.

151.Какое добавочное сопротивление надо включить последовательно с лампочкой, рассчитанной на напряжение U1=120 В и мощность N=60 Вт, чтобы она давала нормальный накал при напряжении U2=220 В ? Сколько метров нихромовой проволоки диаметром d=0,5 мм понадобится на изготовление такого сопротивления?

152.ЭДС батареи Е=50 В, внутреннее сопротивление r=3 Ом. Найти силу тока в цепи и напряжение, под которым находится внешняя цепь, если ее сопротивление R=17 ОМ.

153.Определить мощность и силу тока, потребляемую электродвигателем, приводящим в действие насосную установку, снабжающую водой животноводческую ферму с суточным расходом воды объемом V=30 м3. Вода подается на высоту h=20 м. КПД установки ή=80%, напряжение в сети U220 В, двигатель работает t=6 ч в сутки.

154.Какой длины нужно взять никелиновую проволоку сечением S=0,05 мм2 для устройства кипятильника, в котором за время t=15 мин можно вскипятить воду объемом V=1 л, взятую при температуре t=100C? Напряжение всети U=110 В, КПД кипятильника ή=60%, удельная теплоемкость воды с=4,2 кДж/ (кг·К).

155.Термопара с сопротивлением r1=6 Ом и постоянной R=0,05 мВ/К и подключена к гальванометру с сопротивлением r2=14 Ом и чувствительностью I=10-8 А. Определить минимальное изменение температуры, которое позволяет определить эта термопара.

156.Определить температуру почвы, в которую помещена термопара железо-константан с постоянной R=50 мкВ/0С, если стрелка включенного в цепь термопары гальванометра с цельной деления 1 мкА и сопротивлением r=12 Ом отклоняется на 40 делений. Второй спай термопары погружен в тающий лед. Сопротивлением термопары пренебречь.

157.Один спай термопары с постоянной R=50 мкВ/0С помещен в печь, другой – в тающий лед. Стрелка гальванометра, подключенного к термопаре, отклонилась при этом на п=200 делений. Определить температуру в печи, если сопротивление гальванометра вместе с термопарой r=12 Ом, а одно деление его шкалы соответствует силе тока 1 мкА (чувствительность гальванометра).

158Сила тока I в цепи, состоящей из термопары с сопротивлением r1=4 Ом и гальванометра с сопротивлением r2=80 Ом, равна 26 мкА при разности температур спаев ∆t=500С. Определить постоянную термопары.

159.Сила тока в цепи, состоящей из термопары сопротивлением r1=14 Ом и гальванометра с сопротивлением r2=80 Ом, равна 26 мкА при Разности температур спаев ∆ t=500С. Определить постоянную термопары.

160.Термопара медь – константан сопротивлением r1=12 Ом присоединена к гальванометру сопротивлением r2=108 Ом. Один спай термопары находится при температуре t1=220С, другой – помещен в стог сена. Сила тока в цепи I=6,25 мкА. Постояная термопары R=43 мкВ/0С. Определить температуру сена в стоге.

studfiles.net

помогите решить пожалуйста по физике! Очень нужна помощь я не бум бум)))

Елена Евсеева Ученик (168), на голосовании 3 года назад 1. Для направленного роста растений в космосе предполагается применять вращающиеся оранжереи. Вычислить частоту и период вращения оранжереи, необходимые для получения центробежной силы инерции F =0,3 mg, на расстоянии R=25 м от оси.

37. Определить энергию поступательного движения молекул пара массой m=18 г при температуре t= 16˚С.

45. Объем паров углекислого газа при адиабатном сжатии уменьшился в два раза. Как изменилось давление?

58. На заряд Q1=1 нКл, находящийся в поле точечного заряда Q на расстоянии r= 10 см от него, поле действует с силой F= 3 мкН. Определить напряженность и потенциал в точке, где находится заряд Q. Найти также значение заряда Q.

84. Определить напряженность и индукцию магнитного поля у стенки длинной электронно-лучевой трубки диаметром d=6 см, если через сечение электронного шнура проходит 1018 электронов в 1 с. Считать электронный шнур тонким и центральным.

111. Норма минимальной освещенности содержания животных E = 20 лк (лампы накаливания) . Определить силу света лампы, подвешенной на высоте h = 3 м. Расчет произвести при условии, что эту освещенность создают две лампы, расположенные на расстоянии l = 8 м друг от друга.

123. Температура воды в пруду равна 13˚С, а поросшего травой берега 23˚С. Какие длины волн соответствуют максимальной энергии пруда и травы?

138. для агробиологических исследований в питательную смесь введен 1 мг радиоактивного изотопа 3215Р, период полураспада которого равен T1/2=14,28 сут. Определить постоянную распада и активность фосфора.

Голосование за лучший ответ

Похожие вопросы

Также спрашивают

otvet.mail.ru

5 вариант. 5. Для направленного роста растений в космосе предполагается применять вращающиеся оранжереи.

2015

Важно! При покупке готовой работы сообщайте Администратору код работы:

350-10-15

приблизительное количество страниц: 12

Соглашение

* Готовая работа (дипломная, контрольная, курсовая, реферат, отчет по практике) – это выполненная ранее на заказ для другого студента и успешно защищенная работа. Как правило, в нее внесены все необходимые коррективы.* В разделе "Готовые Работы" размещены только работы, сделанные нашими Авторами.* Всем нашим Клиентам работы выдаются в электронном варианте.* Работы, купленные в этом разделе, не дорабатываются.* Работа продается целиком; отдельные задачи или главы из работы не вычленяются.

С условиями соглашения согласен (согласна)

Цена: 300 р. Купить эту работу

Скачать методичку, по которой делалось это задание (0 кб)

Содержание

5. Для направленного роста растений в космосе предполагается применять вращающиеся оранжереи. Вычислить частоту вращения оранжереи, необходимую для получения центробежной силы на расстоянии от оси вращения.

44. Маховик с моментом инерции 60 кг·м² начинает вращаться под действием момента силы 120 Н · м. Определить угловую скорость, которую маховик будет иметь через 5 с.

46. Точка совершает гармонические колебания, описываемые уравнением (в метрах). Определить ускорение через 2/3 с после начала колебаний.

58. Определить плотность углекислого газа при 117°С и давлении 202 кПа.

79. Давление внутри плотно закупоренной бутылки при температуре  равно 5,32 кПа. При нагревании до температуры  из бутылки вылетела пробка. Определить при каком давлении это произошло.

104. Сколько теплоты пройдет через 1 м2 поверхности песка за 1 час, если температура на его поверхности 20°С, а на глубине 0,5 м температура 10°С?

108. При адиабатном расширении углекислого газа с количеством вещества 2 моль его температура понизилась на 20°С. Какую работу совершил газ?

134. Два заряда (30 нКл) и (-30 нКл) находятся на расстоянии 25 см один от другого. Найти напряженность и потенциал поля, созданного этими зарядами в точке, расположенной между зарядами на линии, соединяющей заряды, на расстоянии 5 см от первого заряда.

158. Разность потенциалов на пластинах плоского конденсатора 300 В. Площадь каждой пластины 100 см2  и заряд 10 нКл.  Определить расстояние между пластинами.

164. Через графитовый проводник в форме параллелепипеда длиной 3 см и площадью поперечного сечения 30 мм2 идет ток силой 5 А. Найти падение напряжения на концах графитового проводника.

 

 

 

 

Цена: 300 р.

Купить эту работу

Все темы готовых работ →

Другие готовые работы по теме «физика»

www.sibznanie.ru

Сельское хозяйство в космосе

Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой — для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе — обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса — слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».

Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год. Источник

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю — на это время хватило бы кислорода и еды.

Полёт Белки и Стрелки в августе 1960 года был более успешен и для собак, и для сопровождающих их животных — сорока мышей и двух крыс. Вместе с этим «Ноевым ковчегом» советские учёные отправили в космос семена кукурузы, пшеницы, гороха и лука. На Землю вся команда спустилась в контейнере, разработанном для будущих полётов человека. Но этого было мало — заниматься сельским хозяйством в космосе должен был начать человек.

Собака Лайка, первая собака на орбите Земли

В книге «Космос — землянам» лётчик-космонавт, член экспедиции «Союз-3» Георгий Береговой писал о том, что человеку свойственно ощущать причастность к земной природе, где бы он ни был: «Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» — зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А. Губарев и Г. Гречко, а затем вновь посадили участники следующей экспедиций — П. Климук и В. Севастьянов».

На орбитальной станции «Салют-4», запущенной в 1974 году, была установка «Оазис» для культивирования растений в невесомости. Георгий Гречко писал в книге «Космонавт №34», что работа с системой была одним из самых интересных экспериментов в его полёте. Установка была гидропоническая, земли не было, горошины должны были прорастать в пропитанной марле. Вскоре после начала работы с «Оазисом» космонавт заметил, что в одну кювету вода не поступает, а в другую поступает слишком обильно, заставляя горошины подгнивать. Из установки срывались огромные капли воды, за которыми Гречко гонялся по станции с салфетками. Он отрезал шланг и стал поливать горошины вручную, пока несколько часов возился с аппаратом.

Космонавт признаётся, что из-за ненависти к биологии в школе чуть не загубил эксперимент. Он посчитал, что ростки путаются в ткани, растут неправильно, и освободил их от марли, но это не помогало. Оказалось, что он перепутал корешки со стеблями.

Эксперимент завершился успешно. Впервые в космосе растения прошли цикл от семени до взрослого стебля гороха. Но из 36 зерен взошли и выросли только три.

«Оазис-1» в Мемориальном музее космонавтики. Источник

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации — проросток должен тянуться к свету, а корень — в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», — говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных — горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе — нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».

Техника — молодёжи, 1983-04, страница 6. Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму — способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации — растения выращивались в центрифуге. Центрифуга помогла — ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже — оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине — «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа — бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.

«Фитон», «Светоблок» и «Оазис-1А»

Установка «Трапеция» для исследования роста и развития растений. Источник

Наборы с семенами

Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе — то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус — космонавтам нужно было заниматься опылением.

Результат был интересный — семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает, что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.

Видео Роскосмоса о выращивании растений в космосе. На 4:38 — растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень, выращенную в условиях микрогравитации.

Выращенный на Международной космической станции салат

Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2». В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.

Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема — состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.

Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images

Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм — слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.

Источник

Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных. Источник

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» — эта система действует и сейчас. Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях — фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% — по питанию. Главные цели Международного центра замкнутых экологических систем — изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500». В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи — в одной рос салат, в другой — горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» — GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями.

У человека будет много шансов умереть на Марсе. Он рискует разбиться при посадке, замёрзнуть на поверхности или же просто не долететь. И, конечно, умереть от голода. Растениеводство необходимо для образования колонии, и учёные и космонавты работают в этом направлении, показывая удачные примеры выращивания некоторых видов не только в условиях микрогравитации, но и в имитированном грунте Марса и Луны. У космических колонистов определенно будет возможность повторить успех Марка Уотни.

Автор: ivansychev

Источник

www.pvsm.ru

Растения используют «шестое чувство» для роста на МКС

Исследователи с Японским агентством аэрокосмических исследований проведут второй заход исследования ощущения гравитации растениями после новой шестой коммерческой поставки запасов SpaceX на МКС. Исследовательская группа стремится определить, как растения чувствуют направление роста без силы тяжести. Результаты исследования могут иметь последствия для повышения урожая в сельском хозяйстве, а также для выращивания растений для длительных космических миссий.

Исследование рассматривает клеточный процесс формирования Арабидопсис (Arabidopsis thaliana - Резуховидка Таля), небольшого цветкового растение семейства капустных. Его генетическое строение простое и легкое для понимания среди членов растительного биологического сообщества. Это знание позволяет ученым легко распознать изменения, которые происходят в результате адаптации в условиях микрогравитации.

Понимание клеточных процессов в развитии растений может перевести к лучшему изучению клеточных процессов в организме человека. В частности, это может повлиять на медицинскую науку, так как научно-исследовательские команды могут получить более глубокое понимание механизмов заболеваний, связанных с силой тяжести, таких как остеопороз и атрофия мышечной ткани.

Ученые изучают механизмы растения, которые определяют направление его роста – датчик силы тяжести – при отсутствии гравитации. В частности, исследовательская группа анализирует, как концентрация кальция ведет себя в клетках растений, первоначально выращенных в условиях микрогравитации, когда позже они подвергаются воздействию 1г окружающей среды, или гравитации, аналогичной земной. Концентрации кальция в растениях покажет изменения в зависимости от температуры и адаптирует к направлению гравитации на Земле.

Исследователи используют центрифугу CBEF (Cell Biology Experiment Facility) в японском экспериментальном модуле «Кибо», чтобы контролировать реакцию растений на изменения при микрогравитации и имитации состояния 1г среды.

Ученые предполагают, что процесс, в котором амилопласт – частицы в растительной клетке, что сохраняют и синтезируют крахмал для энергии – распределяется и собирается, происходит в направлении гравитационного притяжения. После того, как амилопласт уляжется, он активирует механизмы в клетках растения, в том числе увеличение концентрации кальция. Эти механизмы формируют молекулярную структуру в клетке, стимулирующие ощущение гравитации для роста.

Если гипотеза исследования подтвердится, станет возможным модифицирование механизмов ощущения гравитации растения на Земле или выращивание здоровых растений для питания в будущих дальних космических полетах или, предположительно, на других планетах.

-----------

Вы хотите выращивать культурные растения прямо у вас дома или на даче? В последнее время большой популярности набрали гроубоксы. Это оборудованное герметичное помещение для выращивания растений. Подробнее об этом вы всегда можете узнать, если вам будет интересно. Это отличная возможность высаживать свежие овощи у вас дома.

infuture.ru

«Планктонные пищевые инкубаторы» для длительных космических экспедиций.



  «Планктонные пищевые инкубаторы» для длительных космических экспедиций.

 Современные системы  жизнеобеспечения космических кораблей не позволяют регенерировать пищевые продукты, но дальние космические экспедиции будущего потребуют полной автономности.

На сегодняшний день возобновляемость пищевых продуктов предполагается обеспечивать за счет выращивание растений, в специальных отсеках, или модулях – «Космических плантациях» или «Оранжереях».

  Массивные космические плантации плохо соответствуют запросам предельной легкости и функциональности, но фотосинтез растений не единственный источник возобновляемой биомассы. В качестве альтернативы может быть использован «Хемосинтез» бактерий, питающихся химическими веществами от систем жизнеобеспечения. На основе хемосинтеза могут быть сконструированы компактные и легкие пищевые инкубаторы, для культивации планктонных рачков, способных служить основой рациона экипажей.

 Принцип культивации пищевых организмов за счет хемосинтеза позволяет снизить массу обитаемых станций для межпланетных перелетов и баз на других планетах.   

 Коммерциализация этой технологии на земле, позволяет создать новые направления в пищевой индустрии, с использованием природного газа или сухой растительной биомассы в качестве исходного сырья, снижая зависимость от разрушающей экосистему обработки почвы.  

 

 

  Обеспечение людей пищевыми продуктами, не самая трудно решаемая задача для современной космонавтики. На околоземные станции продукты можно без больших затруднений доставлять с земли, то же можно сказать про пилотируемые полеты на луну, предполагаемые в близкой перспективе. 

 Но при дальнейшем развитии космонавтики, с началом длительных, многолетних полетов и создания постоянных баз на других планетах, проблема источников пищевых продуктов значительно обострится. 

 

  Питание одна из первоочередных потребностей для членов экипажей, а при удаленных от земли космических полетах, снабжение с земли будет невозможно или сильно затруднено. Если вода и воздух могут постоянно возобновляться системами жизнеобеспечения пилотируемых кораблей, то с продуктами дело обстоит несколько сложнее.  Прямой химический синтез пищи из исходных элементов, как футуристических  фильмах, в которых автоматы делают пищевые кубики или таблетки из воды и воздуха, невозможен. Хотя химический синтез был бы самым простым способом решения проблемы источников питания. Но полноценный пищевой рацион включает тысячи сложнейших органических веществ, для синтеза которых нужны мощности фармцевтической корпорации, сделать компактный аппарат для химического синтеза продуктов, задача, не решаемая в обозримой перспективе. 

 Ресурсы для жизнеобеспечения членов экипажей в длительных межпланетных космических полетах и инопланетных баз, должны быть возобновляемыми. При колонизации других планет, предстоящей в перспективе, нужно максимально использовать инопланетные ресурсы, это одно из принципиальных условий колонизации.  Принятый сейчас вариант возобновления пищевых ресурсов предусматриваетбиологический метод воспроизводства за счет фотосинтеза. На кораблях предполагается выращивать растения и использовать полный оборот органических веществ от простейших элементов, до конечных продуктов, с использованием энергии света и фотосинтеза растений. Аналогично возобновлению органических веществ в биосфере земли, за счет поглощения солнечной энергии растениями, и кругообороту основных биогенных элементов, обеспечивающих непрерывный прирост биомассы. 

 Фотосинтез может обеспечить полную автономность систем жизнеобеспечения, но у негоесть свои недостатки и ограничения. Коэффициент полезного действия фотосинтеза очень низкий, всего доли процента, рост растений медленный процесс и для выращивания растений в «Космических плантациях» нужна большая площадь, в масштабах планеты это не имеет значения, но на космических кораблях пространство ограничено и энергию нужно использовать с максимальной эффективностью.  

 

 Космические плантации, могут занимать пространство сравнимое с обитаемыми модулями, для обеспечения экипажей которых они предназначены. Стандартный современный модуль российского производства весит около 20 тонн и имеет внутреннюю площадь – 80 квадратных метров, для обеспечения продуктами одного человека нужна площадь около 25 квадратных метров. Полезную площадь космической плантации можно увеличить за счет внутренних конструкций до 100, 125, квадратных метров, тогда космическая плантация сможет кормить 4, 5, человек, но все равно вес пищевого модуля в пересчете на члена экипажа будет не менее 4 тонн. В условиях жесткого  габаритно массового дефицита космических кораблей, дополнительный модуль немалый довесок к системе жизнеобеспечения. Вес 4 тонны соответствует запасу сублимированных и консервированных продуктов на 10, 18 лет. Для межпланетных полетов потребуется еще и дополнительная защита от радиации, вес которой сравним с весом модуля.  

  Если масса космической плантации, не меньше десятилетнего запаса продуктов, возникает вопрос, стоит ли овчинка выделки? Создавать тяжелую, полностью автономную систему жизнеобеспечения, или просто обеспечить экипаж многолетним запасом продовольствия?             

 В ближайшее время не предполагаются полеты длительностью больше нескольких лет, поэтому вопрос о целесообразности использования космических плантаций отпадает сам собой. Плантации могут оправдать себя только в экспедициях длительностью десятки лет или практически бессрочных постоянных экспедициях на другие планеты, рассчитанные на дальнейшую колонизацию.  

 Тем не менее, мысль о полностью автономных системах жизнеобеспечения остается очень заманчивой, так как человечество на данном этапе располагает техническими возможностями создавать постоянные базы на других планетах. Если будут решены проблемы с автономным жизнеобеспечением и сведены к минимуму потребности снабжения с земли, можно будет создавать постоянные базы на других планетах при умеренных затратах. 

 В идеале вес источников возобновляемого питания не должен превышать тонны в пересчете на человека и занимать пространство не более нескольких кубических метров, такие габаритно массовые характеристики позволяли бы размещать системы регенерации питания непосредственно в обитаемых модулях, сделав их составной частью систем жизнеобеспечения. Получить такие параметры с использованием фотосинтеза маловероятно, даже если использовать высокопродуктивные растения, такие как, например, одноклеточные водоросли, к тому же каша из водорослей вряд ли будет полноценным источником пищи и придется по вкусу космонавтам. 

 Но культивация пищевых организмов не обязательно должна быть основана на фотосинтезе. Для этой цели можно использовать так называемый – «Хемосинтез», поглощение организмами простых химических веществ с использованием их энергии для прироста биомассы. Исходные питательные вещества, такие как водород, метан, или спирт, могут легко возобновляться системами жизнеобеспечения, так же как и кислород необходимый для дыхания.  

 Растений или животных способных питаться водородом или метаном не существует, методом хемосинтеза можно культивировать только бактерий, а биомасса бактерий для питания людей не пригодна. Но высокая продуктивность хемо синтеза, позволяет культивировать более сложные организмы за счет простых пищевых цепей. Исходный питательный субстрат может поглощаться бактериями, биомасса бактерий может служить  питательным субстратом для простейших, простейшие в свою очередь для рачков, а мелкие рачки или креветки это полноценный пищевой продукт способный служить основой рациона. Некоторые виды планктонных рачков могут питаться бактериями, что может предельно упростить пищевую цепь, если удаться подобрать культуру бактерий способных синтезировать все необходимые питательные вещества.  

 При культивации пищевых организмов в несколько стадий, большая часть энергии будет расходоваться на поддержание процессов их жизнедеятельности, а не накапливаться в виде конечной биомассы. Но КПД и биологическая продуктивность такого метода все равно в десятки раз выше, чем при выращивании зеленых растений. Скорость роста микроорганизмов при оптимальных условиях очень велика, их биомасса может многократно удваиваться в течение суток.  

 Эффективность микро экосистем основанных на хемосинтезе наглядно демонстрируют небольшие природные сообщества, образующиеся вокруг подводных гейзеров, так называемых – «Черных курильщиков». Колонии бактерий, поглощающие сероводород, растворенный в воде извергаемой гейзерами, продуцируют первичную биомассу служащую пищей для  многочисленных полипов, червей, ракообразных и стай рыб, окружающих эти глубоководные оазисы жизни.   

  

 

 

 Есть и более обыденные примеры высокой продуктивности микроорганизмов. Корова, которая питается травой, не может самостоятельно переваривать растительную клетчатку, корову фактически «Кормят» несколько килограмм бактерий и инфузорий, живущих в ее желудке.  

 Рачки, конечное звено пищевой цепи, растут не с молниеносной скоростью, но все-таки достаточно быстро, планктонные ракообразные, питающиеся микроорганизмами, удваивают свою биомассу за несколько дней. Масса культивируемых рачков в 6, 10, килограмм может уверенно «Кормить» одного человека.    

 

 При такой продуктивности биохимический пищевой инкубатор весом в несколько сотен килограмм и объемом 1 - 3 кубических метра, может обеспечивать одного члена экипажа, что вполне укладывается в габаритно массовые показатели приемлемые для систем жизнеобеспечения обитаемых модулей.

 Недостатки «Креветочного инкубатора» в том, что он может давать только креветочную пасту, однообразную белковую пищу, а люди нуждаются в разнообразном питании и больше приспособлены к преимущественно углеводным продуктам. Мясо рачков, хоть и белковая, но достаточно легкая пища, чтобы не вызывать проблем с пищеварением. В качестве источника углеводов можно культивировать простейших, склонных к накоплению «Гликогена», близкого аналога растительного крахмала. Для разнообразия можно в дополнительных инкубаторах выращивать грибы, быстрорастущую мелкую рыбу и мелких животных питающихся креветочной пастой. В компактных «Микрофермах», можно выращивать быстрорастущую зелень, которая будет «Витаминной добавкой» к основному рациону. Для культивации зелени не нужен отдельный модуль, как для злаковых, будет достаточно нескольких «Микро грядок», сравнимых по размеру с солярием.     

  Таким образом, культивация пищевых организмов за счет использования хемосинтеза бактерий и простых пищевых цепей, может обеспечить экипажи полноценным питанием, не выходя за рамки габаритно массовых ограничений стандартных обитаемых модулей.  

 Предлагаемый метод возобновления пищевых ресурсов может снизить затраты на дальние пилотируемые экспедиции,  позволяя создавать практически автономные космические поселения, всего из нескольких стандартных модулей.

  Технология культивации пищевых организмов за счет хемосинтеза может быть использована не только в космосе, но и на земле. Коммерциализация этого направления в промышленности может дать новое направление в пищевой индустрии.  Культивация пищевых продуктов промышленным методом, без обширных сельскохозяйственных земель более выгодна в современных крупных городах и во многом более щадящая для окружающей среды. 

 Сейчас на рыбных фермах используется культивация рачков, дафнии или моины, для кормления рыбы, с использованием в качестве первоначального субстрата сухой травы, навоза и дрожжей. Но культивация микроорганизмов в стерильных емкостях на метане может дать более чистую культуру и более высокий прирост биомассы. Выращивание планктонных рачков на микроорганизмах, для изготовления «Креветочной пасты», может иметь значительно более высокую продуктивность, чем традиционное разведение рыбы.   

 

 Промышленная культивация рачков, вместе с выращиванием быстрорастущих животных и зелени на гидропонике, по аналогии с перспективными космическими пищевыми системами, могла бы составить значительную часть пищевой индустрии городов будущего.

  В сельской местности есть изобильный природный ресурс – «Растительная клетчатка», составляющая основную часть сухой биомассы растений, которая так же может служить субстратом для культивации пищевых организмов, через пищевые цепи, начинающиеся с бактерий. Но оборудование со специальными емкостями слишком дорогое и сложное в обслуживании для сельского хозяйства.  В агропромышленном комплексе можно использовать другой метод культивации организмов на естественном субстрате, имеющий близкую аналогию с природным разложением сухой листвы и травы, основой которого служит компост из растительной массы, поглощаемой микроорганизмами. «Компостная фермерская технология», или – «Комплексный метод культивации грибов и птицы на целлюлозном субстрате»,  предполагает последовательное выращивание грибов и дождевых червей на субстрате из сухой травы, древесных отходов, или хвойного лесного опада.  http://www.spb-venchur.ru/projects/612.htm    http://barbados444.narod.ru/Compost11.html

 Хоты бактерии, питающиеся клетчаткой, являются «Гетеротрофами», питаются биомассой, а не химическими веществами как «Хемоафтотрофы», продуцирующие биомассу из поглощаемых химических веществ. В методе культивации пищевых организмов на компосте используется тот же принцип, простых пищевых цепей начинающихся с бактерий, что и в «Планктонных инкубаторах», с той разницей, что он приближен к природным аналогам, а потому не нуждается в специальном оборудовании.  

 Компостная технология предусматривает последовательную культивацию грибов и червей на разлагающемся субстрате -  компосте, после чего черви служат кормом для птицы, а остатки компоста – «Биогумус», используются в качестве удобрения.  Субстрат, разлагающийся под действием бактерий, содержит сахар, в небольшой концентрации, образующийся при расщеплении клетчатки пищеварительными ферментами бактерий и служит питательной средой для грибов. После того как с субстрата сняты несколько урожаев грибов, субстрат с высоким содержанием бактерий и остатками грибного мицелия служит качественной средой для выращивания червей, благодаря высокому содержанию белка. Когда субстрат полностью истощится,   червей склевывают птицы, остатки субстрата состоят преимущественно из почвообразующего компонента «Гумуса».   

 

 

   Технологии культивации грибов на растительном  субстрате и червей для получения гумуса, используются в агротехнологии. Но предлагаемая комплексная технология не традиционная, она имеет ряд специфических особенностей и преимуществ. Высокую отдачу, за счет практически полного использования питательных веществ субстрата, практически безотходность, так как все производимые продукты, грибы, птица, гумус, имеют коммерческую ценность. 

  Комплексная компостная технология позволяет повысить производительность и рентабельность традиционного сельского хозяйства. А так же развивать фермерство без традиционной культивации земли, используя естественные источники субстрата, такие как дикорастущий тростник, кустарники, хвойный лесной опад, или отходы переработки древесины.  Такой способ ведения хозяйства может быть особенно щадящим для природы, так как позволяет использовать ресурсы естественной экосистемы, не уничтожая ее.

 Культивация пищевых организмов с использованием пищевых цепей начинающихся с бактерий, растущих на питательном субстрате, может быть использована и в космосе, и на земле.  

 В космосе, она позволяет получить легкие и компактные системы регенерации пищевых ресурсов, наличие которых может облегчить развитие космонавтики и ускорить колонизацию ближайших планет. На земле, создать новые направления в пищевой индустрии, способные снизить зависимость от традиционной культивации земли, для выращивания растений. Коммерческие пищевые технологии, не зависящие от агрокультуры, могут прокормить растущее население земли без ущерба для экосистемы. Кроме того они дают подстраховку на случай глобальных катастроф. В случае резкой перемены климата, ядерной, астероидной, или вулканической зимы, аграрные ресурсы будут уничтожены, но источники метана и сухой растительной биомассы останутся практически не поврежденными. 

 Это один из многочисленных примеров того, как идеи, возникающие в процессе интеграции людей  в космическое пространство, могут придавать новое качество развитию технологий и жизненного пространства людей.

  Николай Агапов.

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

cosmos.mirtesen.ru

Направленные светодиоды позволят вырастить растений в космосе почти без затрат: luckyea77

Команда из университета Пердью во главе с доктором Кэри Митчеллом (Cary Mitchell) обнаружила, что направленный «обстрел» растений красными и синими лучами из светодиодов обеспечит необходимые условия для выращивания пищевых культур в космических капсулах. Исследования показали, что такой способ намного эффективнее любых аналогов.

Учёные провели эксперимент с листьями салата, которые выращивались в условиях, имитирующих среду космических капсул. На растение направили свет синих и красных светодиодов в соотношении 95 к 5, соответственно. Оказалось, что при таких условиях электроэнергии потребляется почти на 90% меньше, чем при обычном освещении. К тому же, если расставить светодиоды близко к самим растениям, то получится дополнительная экономия в электроэнергии в 80% по сравнению с расстановкой ламп по потолку.Исследование показывает, что эта модель может быть использована при планировании дизайна модулей жизнеобеспечения для космонавтов и колонистов других планет. Также данная технология может быть полезна в сельском хозяйстве при выращивании растений на земле в необычных условиях.

"Всё на Земле, в конечном счёте, зиждется на солнечном свете и фотосинтезе. Вопрос заключается в том, как мы можем воспроизвести эти условия в космосе. Если необходимо создать освещение при ограниченных энергоресурсах, то направленные светодиоды — это лучший из возможных вариантов", — утверждает Митчелл в пресс-релизе.

Обычные натриевые лампы высокого давления на 600-1000 ватт обычно имитируют солнечный свет для выращивания сельскохозяйственных культур на Земле. Но они не подходят для космоса, поскольку могут подпалить растения, а также требуют системы фильтрации, чтобы поглотить выделяемое избыточное тепло. Всё это потребует огромных расходов электроэнергии, которые космические путешественники не могут себе позволить.

Высокоинтенсивные светодиоды потребляют около 1 ватта каждый и гораздо прочнее и безопаснее натриевых ламп. Они не выделяют теплового излучения и потому могут быть расположены совсем близко к растению — всего в четырёх сантиметрах. Таким образом можно максимизировать количество света, которое будет поглощено листьями.

Митчелл и его коллеги уверены, что их методика позволит не только оптимизировать ведение сельского хозяйства на Земле, но и поможет выстроить оранжереи на Луне и Марсе. Его статья с результатами исследования была опубликована в журнале Life Sciences in Space Research.

luckyea77.livejournal.com


Sad4-Karpinsk | Все права защищены © 2018 | Карта сайта